Statement of Verification

BREG EN EPD No.: 000377

Issue 02

BRE/Global

EPD

tie

This is to verify that the

Environmental Product Declaration provided by:

NatSteel Holdings Pte Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

anc

BRE Global Scheme Document SD207

This declaration is for: **1 tonne steel Cut and Bend Reinforcement Bars and Reinforcement Carpet**

Company Address

NatSteel Holdings Pte Ltd 22 Tanjong Kling Road Gate 1 Singapore 628048

Emma Baker

ed for BRE Global Ltd

obal Ltd Operator

25 October 2021 Date of First Issue

05 October 2023 Date of this Issue

24 October 2026 Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit <u>www.greenbooklive.com/terms</u>. To check the validity of this statement of verification please, visit

www.greenbooklive.com/check or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

BF1805-C-ECOP Rev 0.2

Page 1 of 15

© BRE Global Ltd, 2021

Environmental Product Declaration

EPD Number: 000377

General Information

EPD Programme Operator	Applicable Product Category Rules						
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013						
Commissioner of LCA study	LCA consultant/Tool						
NatSteel Holdings Pte Ltd 22 Tanjong Kling Road Gate 1 Singapore 628048	LCA consultant: Roger Connick Tool: BRE LINA v2.0						
Declared Unit	Applicability/Coverage						
1 tonne steel Cut and Bend Reinforcement Bars and Reinforcement Carpet	Manufacturer specific product						
ЕРД Туре	Background database						
Cradle to Gate with options	ecoinvent v3.2						
Demonstra	tion of Verification						
CEN standard EN 15	804 serves as the core PCR ^a						
Independent verification of the declara	tion and data according to EN ISO 14025:2010 ⊠ External						
	iate ^b) Third party verifier: ligel Jones						
a: Product category rules	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)						
Comparability							
EN 15804:2012+A1:2013. Comparability is further dependent	programmes may not be comparable if not compliant with endent on the specific product category rules, system boundaries ause 5.3 of EN 15804:2012+A1:2013 for further guidance						

EPD Number: 000377 BF1805-C-ECOP Rev 0.2 Date of Issue:05 October 2023 Page 2 of 15

Information modules covered

	Produc	t	Const	ruction	Rel	ated to		Use sta Iding fa		Relat the bເ			End-	of-life		Benefits and loads beyond the system boundary
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
\checkmark	Ø	V												V	V	\checkmark

Note: Ticks indicate the Information Modules declared.

Manufacturing site

NatSteel Holdings Pte Ltd 22 Tanjong Kling Road Gate 1 Singapore 628048

Construction Product

Product Description

Cut and Bend Reinforcement Bars (CAB)

Cut-And-Bend Reinforcement Bars (CAB) are manufactured from Reinforcement Bars, the product is manufactured for concrete construction solutions. Typically, the products are used in Bored Pile, Pile Cap, Column, Beam, Slab, and Wall structural elements.

Like its name suggests, CAB are cut from the full-length Reinforcement Bars and bend exactly to the specifications required by shaping and sizing during its manufacturing process. NatSteel's CAB Reinforcement Bars conform to BS 8666.

The advantages of CAB products include controlled material wastage and enhanced on-site storage space, logistics, and reduced inventory requirement onsite. Despite manual installation works required on-site, lesser manpower is required in the installation process of CAB products.

The product allows in-house processes and procedures that ensure traceability through the order level, and is independent of weather conditions.

Reinforcement Carpet

Reinforcement Carpet is manufactured with Reinforcement Bars in the form of a carpet or roll for large areas of floor, providing an alternative to a Welded Steel Fabric Reinforcement solution. The product is typically applied to the structural elements of Basements, Heavy Slabs, RC Walls, Raft Foundations, Large Pile Caps, Cut-and-Cover tunnels, Bridge Decks, Roads, Underground and Above-ground Train Tunnels, and Airport Runway Wharves.

The manufacturing process involves the rationalisation of Reinforcement Bars to reduce variations in bar sizes and spacing, for welding into flexible strips through a welding machine, and rolling into the Reinforcement Carpet.

For installation, the product is transported to site and lifted into position by a crane to be placed at the required area, ready to be rolled-out like a carpet. With up to 60% less manpower required, the product increases productivity by up to 10 times compared to the conventional method of loose bar fixing onsite.

Technical Information

The below table covers the basic technical properties of the reinforcing steel products:

Property (TBC)	Value, Unit (TBC)
Production Route	EAF
Density	7.85 g/cm ³
Weldability	Yes
Yield Strength	250-700 Mpa
Tensile Strength	400-800 Mpa
Surface Geometry	Plain bar and ribbed bar in round bar form
Elongation	15-40%
Re-bond test	n/a
Recycled Content	95%

1 Standard density for mild steel as listed in Singapore Steel standard SS 560:2016 (note 6 of clause no. 7.3).

2 Mill certificates provided confirm samples fall within the tolerances for Yield Strength, Tensile Strength and Elongation.

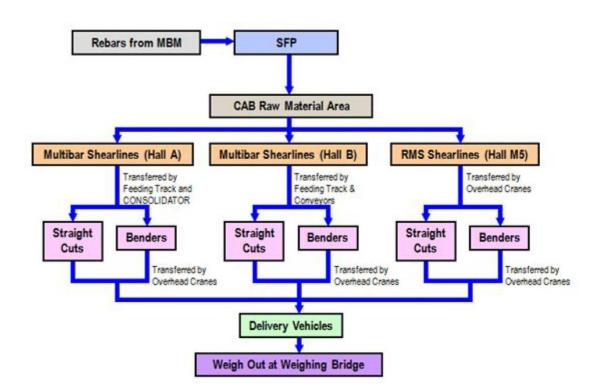
3 Recycled content calculated from inputs listed in the Rebar, Wire Rod and Hot-Rolled DBIC data collection form.

NatSteel's steel reinforcing bar/coil product (incorporating rebar, wire rod and hot-rolled DBIC) conforms to the following standards:

- Singapore Standards Council SS 560:2016 Specification for steel for the reinforcement of concrete Weldable reinforcing steel Bar, coil and decoiled product.
- Malaysian Standard MS 146:2014 Steel for the reinforcement of concrete Weldable reinforcing steel Bar, coil and decoiled product Specification.
- Indian Standard IS 1786:2008 High strength deformed steel bars and wires for concrete reinforcement specification.
- Australian/New Zealand Standard AS/NZS 4671:2019 Steel for the reinforcement of concrete.

Main Product Contents

Material/Chemical Input	Mass (%)
Iron	96-98%
Other additives	2-4%


Manufacturing Process

Cut-And-Bend (CAB) fabrication involves cutting either straight bar or bar in coil to the required order length after compensating for any bending length reductions, then bending the cut bar to the required order shape and dimensions. The two types of material are fed into two different types of machine lines.

Straight bar materials of 10mm to 50mm in diameter are fabricated through the shearline-bender process. This fabrication process involves straight bar loading, cutting cycle, bar rolling to the required length, and consolidation. After the fabrication process is completed, the bars are transferred to the bender conveyor for bending into the required shapes and dimensions. Once completed, the bars are loaded onto a trailer for delivery.

Bar in coil material of 8mm to 16mm in diameter are fabricated through a Polybender machine. The machine unwinds bar in coil by pulling and straightening it via rollers to the required length, and bends it into the required shape and dimensions. After the fabrication process is complete, the finished products are loaded onto a trailer for delivery. The Polybender machine allows an efficient production process, as the technology provides speed while preventing loss of material from cutting.

Process flow diagram

Life Cycle Assessment Calculation Rules

Declared unit description

1 tonne steel Cut and Bend Reinforcement Bars and Reinforcement Carpet.

System boundary

In accordance with the modular approach as defined in EN15804:2012+A1:2013, this cradle-to-gate with options EPD includes the processes covered in the product manufacturing stages A1 to A3, end of life scenarios in modules C3, C4, and material and energy recovery scenarios in module D.

Data sources, quality and allocation

Specific primary data derived from the NatSteel Holdings Pte Ltd production process in Singapore have been modelled using Simapro v9.1 LCA software and the BRE LINA database v2.0.33. In accordance with the requirements of EN15804, the most current available data has been used. The manufacturer-specific data from NatSteel Holdings Pte Ltd covers a period of 1 year (01/04/19 – 31/03/20). Secondary data has been obtained for all other upstream and downstream processes that are beyond the control of the manufacturer (i.e. raw material production) from the ecoinvent 3.2 database. All ecoinvent datasets are complete within the context used, and confirm to the system boundary and the criteria for the exclusion of inputs and outputs according to the requirements specified in EN15804. Calculations were performed to enable allocation of processes to the steel products. Allocation procedures were by physical allocation and are according to EN15804 and are based on ISO14044 guidance.

Cut-off criteria

No inputs or outputs have been excluded. All raw materials and packaging inputs, plus their transport, process and general energy and water use, production and non-production waste, have been included, except for direct emissions to air, water and soil, which are not measured.

End of life scenarios

This EPD includes two sets of results which are published below. The first set of results present the impacts of a 100% steel waste to landfill scenario in end of life Module C4. The second set of results present the impacts of a 100% steel waste to recycling scenario in end of life Module C4. Both sets of results also include Module D, which presents the results of the environmental loads or benefits that have been calculated according to each respective end of life scenario.

NatSteel export their product to many different countries where the end of life scenario varies considerably. The two sets of results for Modules C4 and D presented in this EPD are therefore intended to allow flexibility for end-users of the EPD to calculate the impacts applicable to their own country or region.

LCA Results (Module C4 = 100% to landfill scenario)

Results per declared unit, 1 tonne steel reinforcing bar/coil, for the declared modules, can be found in the following tables:

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; A	AGG = aggregated)
--	-------------------

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
		kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.			
	Raw material supply	A1	5.04e+2	6.79e-5	2.98e+0	6.83e-1	4.64e-1	4.16e-4	9.33e+3		
Product stage	Transport	A2	1.77e-2	3.26e-9	5.93e-5	1.56e-5	1.03e-5	4.67e-8	2.68e-1		
i loudot stage	Manufacturing	A3	6.58e+0	1.10e-6	4.19e-2	9.73e-3	6.12e-3	7.83e-6	1.40e+2		
	Total (of product stage)	A1-3	5.11e+2	6.90e-5	3.02e+0	6.93e-1	4.70e-1	4.24e-4	9.47e+3		
End of life	Waste processing	C3	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0		
	Disposal	C4	5.19e+0	1.76e-6	4.00e-2	9.87e-3	6.91e-3	5.61e-6	1.51e+2		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	4.81e+2	6.48e-5	2.84e+0	6.52e-1	4.43e-1	3.97e-4	8.90e+3		

GWP = Global Warming Potential;

ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels.

Parameters	describing r	esour	rce use, pri	imary ener	gу			
			PERE	PERM	RM PERT PENRE		PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	3.25e+2	9.78e-4	3.25e+2	9.28e+3	0.00e+0	9.28e+3
Product stage	Transport	A2	3.55e-3	1.32e-8	3.55e-3	2.66e-1	0.00e+0	2.66e-1
Product stage	Manufacturing	A3	2.43e+1	2.73e-5	2.43e+1	1.33e+2	0.00e+0	1.33e+2
	Total (of product stage)	A1-3	3.49e+2	1.01e-3	3.49e+2	9.42e+3	0.00e+0	9.42e+3
End of life	Waste processing	C3	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0
	Disposal	C4	3.89e+0	5.90e-6	3.89e+0	1.50e+2	2.66e-1 0.00e+0 2 1.33e+2 0.00e+0 1 9.42e+3 0.00e+0 9 0.00e+0 0.00e+0 0 1.50e+2 0.00e+0 1	1.50e+2
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	3.10e+2	9.33e-4	3.10e+2	8.85e+3	0.00e+0	8.85e+3

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials;
PENRM = Use of non-renewable primary energy resources used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

EPD Number: 000377 BF1805-C-ECOP Rev 0.2

Date of Issue:05 October 2023 Page 8 of 15

PERT = Total use of renewable primary energy resources;

PENRT = Total use of non-renewable primary energy resource

LCA Results (continued)

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m ³				
	Raw material supply	A1	1.18e+3	0.00e+0	0.00e+0	2.81e+1				
Product stage	Transport	A2	0.00e+0	0.00e+0	0.00e+0	5.80e-5				
	Manufacturing	A3	0.00e+0	0.00e+0	0.00e+0	5.31e-2				
	Total (of product stage)	A1-3	1.18e+3	0.00e+0	0.00e+0	2.81e+1				
End of life	Waste processing	C3	0.00e+0	0.00e+0	0.00e+0	0.00e+0				
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	1.72e-1				
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.13e+3	0.00e+0	0.00e+0	2.68e+1				

SM = Use of secondary material;

RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water.

Other environmental information describing waste categories								
			HWD	NHWD	RWD			
			kg	kg	kg			
	Raw material supply	A1	5.66e+1	1.94e+1	2.09e-2			
Droduct store	Transport	A2	1.12e-4	1.25e-2	1.85e-6			
Product stage	Manufacturing	A3	1.08e-1	4.94e-1	3.28e-4			
	Total (of product stage)	A1-3	5.67e+1	1.99e+1	2.12e-2			
End of life	Waste processing	C3	0.00e+0	0.00e+0	0.00e+0			
End of life	Disposal	C4	5.41e-2	1.00e+3	1.02e-3			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	5.40e+1	1.85e+1	1.99e-2			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed.

LCA Results (continued)

Other environmental information describing output flows – at end of life

			CRU	MFR	MER	EE
			kg	kg	kg	MJ per energy carrier
	Raw material supply	A1	0.00e+0	1.85e+2	0.00e+0	0.00e+0
Product stage	Transport	A2	0.00e+0	0.00e+0	0.00e+0	0.00e+0
	Manufacturing	A3	0.00e+0	2.95e+1	0.00e+0	0.00e+0
	Total (of product stage)	A1-3	0.00e+0	2.15e+2	0.00e+0	0.00e+0
	Waste processing	С3	0.00e+0	0.00e+0	0.00e+0	0.00e+0
End of life	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	0.00e+0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00e+0	1.77e+2	0.00e+0	0.00 c +0

CRU = Components for reuse; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy.

LCA Results (Module C4 = 100% to recycling scenario)

Results per declared unit, 1 tonne steel reinforcing bar/coil, for the declared modules, can be found in the following tables:

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; A	AGG = aggregated)
--	-------------------

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
		kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.			
	Raw material supply	A1	5.04e+2	6.79e-5	2.98e+0	6.83e-1	4.64e-1	4.16e-4	9.33e+3		
Product stage	Transport	A2	1.77e-2	3.26e-9	5.93e-5	1.56e-5	1.03e-5	4.67e-8	2.68e-1		
Flouuci slage	Manufacturing	A3	6.58e+0	1.10e-6	4.19e-2	9.73e-3	6.12e-3	7.83e-6	1.40e+2		
	Total (of product stage)	A1-3	5.11e+2	6.90e-5	3.02e+0	6.93e-1	4.70e-1	4.24e-4	9.47e+3		
End of life	Waste processing	C3	1.86e+0	8.35e-8	8.40e-3	2.75e-3	6.55e-4	7.03e-7	2.72e+1		
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.31e+1	-3.11e-6	-1.36e-1	-3.13e-2	-2.13e-2	-1.91e-5	-4.27e+2		

GWP = Global Warming Potential;

ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels.

			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
Product stage	Raw material supply	A1	3.25e+2	9.78e-4	3.25e+2	9.28e+3	0.00e+0	9.28e+3
	Transport	A2	3.55e-3	1.32e-8	3.55e-3	2.66e-1	0.00e+0	2.66e-1
	Manufacturing	A3	2.43e+1	2.73e-5	2.43e+1	1.33e+2	0.00e+0	1.33e+2
	Total (of product stage)	A1-3	3.49e+2	1.01e-3	3.49e+2	9.42e+3	0.00e+0	9.42e+3
End of life	Waste processing	C3	1.36e+0	9.20e-7	1.36e+0	2.70e+1	0.00e+0	2.70e+1
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0	0.00e+0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.49e+1	-4.48e-5	-1.49e+1	-4.25e+2	0.00e+0	-4.25e+2

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

renewable primary energy resources used as raw materials; d as raw PENRM = Use of non-renewable primary energy resources used as raw materials;

materials; PERT = Total use of renewable primary energy resources;

PENRT = Total use of non-renewable primary energy resource

EPD Number: 000377 BF1805-C-ECOP Rev 0.2 Date of Issue:05 October 2023 Page 11 of 15 Expiry Date 24 October 2026 © BRE Global Ltd, 2021

LCA Results (continued)

Parameters describing resource use, secondary materials and fuels, use of wate	Parameters	s describing reso	urce use, secondary	materials and fuels, use	of water
--	------------	-------------------	---------------------	--------------------------	----------

			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m ³
Product stage	Raw material supply	A1	1.18e+3	0.00e+0	0.00e+0	2.81e+1
	Transport	A2	0.00e+0	0.00e+0	0.00e+0	5.80e-5
	Manufacturing	A3	0.00e+0	0.00e+0	0.00e+0	5.31e-2
	Total (of product stage)	A1-3	1.18e+3	0.00e+0	0.00e+0	2.81e+1
End of life	Waste processing	СЗ	0.00e+0	0.00e+0	0.00e+0	1.86e-2
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	0.00e+0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.40e+1	0.00e+0	0.00e+0	-1.29e+0

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels;FW = Net use of fresh water.

Other environmental information describing waste categories						
			HWD	NHWD	RWD	
			kg	kg	kg	
	Raw material supply	A1	5.66e+1	1.94e+1	2.09e-2	
Product stage	Transport	A2	1.12e-4	1.25e-2	1.85e-6	
	Manufacturing	A3	1.08e-1	4.94e-1	3.28e-4	
	Total (of product stage)	A1-3	5.67e+1	1.99e+1	2.12e-2	
End of life	Waste processing	C3	3.44e-3	1.13e-1	3.55e-5	
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.59e+0	-8.89e-1	9.57e-4	

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed.

LCA Results (continued)

Other environmental information describing output flows – at end of life						
			CRU	MFR	MER	EE
		kg	kg	kg	MJ per energy carrier	
Product stage	Raw material supply	A1	0.00e+0	1.85e+2	0.00e+0	0.00e+0
	Transport	A2	0.00e+0	0.00e+0	0.00e+0	0.00e+0
	Manufacturing	A3	0.00e+0	2.95e+1	0.00e+0	0.00e+0
	Total (of product stage)	A1-3	0.00e+0	2.15e+2	0.00e+0	0.00e+0
End of life	Waste processing	C3	0.00e+0	1.00e+3	0.00e+0	0.00e+0
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	0.00e+0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00e+0	-8.47e+0	0.00e+0	0.00e+0

CRU = Components for reuse; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy.

Scenarios and additional technical information

Scenario	Parameter	Parameter Units Results							
C1 to C4 End of life	Description of scenario	Description of scenario							
C3	throughput of the scrap steel comes from construction a and Bend products. After cleaning and sorting, the majo	NatSteel utilise their own waste pre-processing facility (NSR). Approximately 22% of the throughput of the scrap steel comes from construction and demolition sites, and includes Cut and Bend products. After cleaning and sorting, the majority of this then undergoes a further cutting process, where the remainder are already small enough and ready for input to the electric arc furnace.							
C4	Disposal steel waste to landfill (100% scenario)	Kg	1,000						
	Disposal steel waste to recycling (100% scenario)	Kg	1,000						
Module D	Description of scenario After building demolition, Cut and Bend Reinforcement Bars (CAB) are transported to NatSteel's pre-processing facility and can be used as an input material for the steelmaking process. Since the composition of the manufactured steel includes 95% recycled content, the pre-processed Cut and Bend Reinforcement Bars (CAB) can be used as a replacement for the 5% virgin material. Therefore, 1,000 kg of scrap steel waste recovered from building demolition sites can be used to offset the impacts of 45.8 kg of virgin material. The dataset used to represent avoided impacts of the virgin material used in the Cut and Bend Reinforcement Bars (CAB) manufacture was: 'Billet (intermediate), Steel Reinforcing Bar, Coil'.								

Additional information

Interpretation

The scrap-based carbon steel feedstock of NatSteel Holdings Pte Ltd is made via the electric arc furnace (EAF) route. The bulk of the environmental impacts and primary energy demand are attributed to the manufacturing phase, covered by information modules A1-A3 of EN15804:2012+A1:2013.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – Requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

Singapore Standards Council SS 560:2016 – Specification for steel for the reinforcement of concrete – Weldable reinforcing steel – Bar, coil and decoiled product.

Malaysian Standard MS 146:2014 – Steel for the reinforcement of concrete – Weldable reinforcing steel – Bar, coil and decoiled product – Specification.

Indian Standard IS 1786:2008 – High strength deformed steel bars and wires for concrete reinforcement – specification.

Australian/New Zealand Standard AS/NZS 4671:2019 - Steel for the reinforcement of concrete.

Pre Consultants bv. SimaPro 8 LCA Software 2013. http://www.pre-sustainability.com

ecoinvent Centre. Swiss Centre for life Cycle Inventories. http://www.ecoinvent.org