

Statement of Verification

BREG EN EPD No.: 000362

Issue 01

This is to verify that the

Environmental Product Declaration provided by:

Kingspan Insulation Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

BRE Global Scheme Document SD207

This declaration is for:

Kingspan Kooltherm Duct Insulation

Company Address

Kingspan Insulation Limited Pembridge Herefordshire HR6 9LA

Emma Baker

27 May 2021 Date of this Issue Operator

27 May 2021

26 May 2026

Date of First Issue Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000362

General Information

EPD Programme Operator	Applicable Product Category Rules								
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013								
Commissioner of LCA study	LCA consultant/Tool								
Kingspan Insulation Limited Pembridge Herefordshire HR6 9LA	BRE LINA Tool v2.07								
Declared/Functional Unit	Applicability/Coverage								
1m² of insulation at a thickness that gives an R-value of 3.000m².K/W (66mm)	Product Specific.								
EPD Type	Background database								
Cradle to Gate with options	ecoinvent 3.2								
Demonstra	ation of Verification								
CEN standard EN 15804 serves as the core PCR ^a									
Independent verification of the declara	Independent verification of the declaration and data according to EN ISO 14025:2010 □ Internal □ External								
	riate ^b)Third party verifier: ligel Jones								
a: Product category rules									

a: Product category rules b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Product		0			Use stage				Esta (IV)			Benefits and loads beyond			
			Construction		Rel	Related to the building fabric Related to the building		End-of-life			the system boundary					
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{V}}$	$\overline{\mathbf{A}}$	V	$\overline{\mathbf{V}}$	$\overline{\checkmark}$									$\overline{\checkmark}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{V}}$	

Note: Ticks indicate the Information Modules declared.

Manufacturing site

Kingspan Insulation Ltd Pembridge Herefordshire HR6 9LA

Construction Product

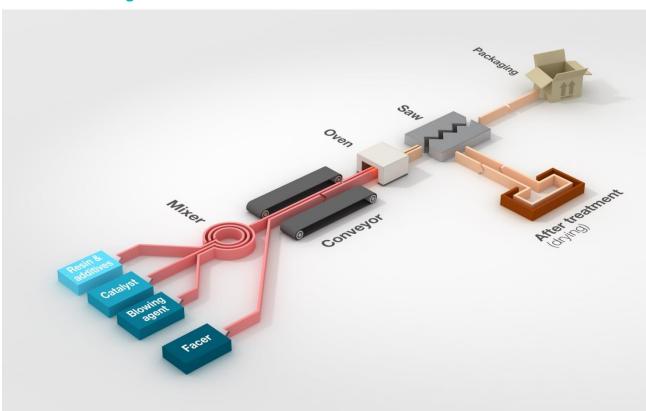
Product Description

Kingspan Kooltherm Duct Insulation consist of premium performance rigid thermoset fibre free phenolic insulation core faced with a glass tissue internal facer and an aluminum vapour barrier foil external facer. Product information is available on www.kingspanductwork.co.uk

Technical Information

Property	Value, Unit
Aged Thermal Conductivity (λ-value) (BS EN 14314: 2009 + A1: 2013)	10°C 0.022 W/m.K
Compressive strength at 10% compression	>100 kPa
Board Size at range of thicknesses	1.2 x 0.6 m

Main Product Contents


Material/Chemical Input	%
Rigid thermoset fibre free phenolic insulation core	93%
Facers	7%

^{*}Average percentages applicable for 1m² of insulation at thickness that gives an R-value of 3.000 m²K/W

Manufacturing Process

Kingspan Kooltherm Duct Insulation is made through a manufacturing process in which a foam forms an insulating core between two facing elements. At the start of the process a mix of chemicals is added directly to the bottom layer of facing and then expands to meet the top layer of facing. As it dries, the foam becomes tacky and adheres itself to the facing, top and bottom. Once it has reached the necessary thickness the foam is cooked under pressure. It is then moved onto a secondary oven to cure and harden, becoming bright pink in colour. The insulation boards are then cut into the necessary sizes, packaged and sent to the loading bay for collection.

Process flow diagram

Construction Installation

The product will be installed in duct applications using standard construction techniques.

Use Information

The product will be left alone after installation, and there are no known associated environmental impacts.

End of Life

The insulation will be removed for disposal when the building reaches the end of its life.

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1m² of insulation at a thickness that gives an R-value of 3.00m².K/W (66mm)

System boundary

Cradle to gate with options: Modules A1-3, A4, A5, C2, C3 and C4.

The following processes are included in the A1-A3 production stage of Kooltherm: Manufacture of preliminary products (resin, blowing agent, additives). Transportation of raw materials and preliminary products to the manufacturing site. Manufacturing process on the production site including, energy, disposal of residual materials, water consumption and VOC emissions to air.

The following process is included within the A4 construction stage: Transportation of the product to the construction site.

The following processes are included in the A5 construction stage of Kooltherm: installation wastage rate, material wastes produced by installation.

The following processes are included in C2, C3 and C4 stage of Kooltherm: End of life scenarios: Transportation of waste from the construction site to the waste disposal plant, incineration of waste in a incineration plant with energy recovery, recycling/reuse of materials, waste sent to landfill.

Data sources, quality and allocation

This EPD covers all Kingspan Kooltherm Duct Insulation is manufactured at the Pembridge site, representing 100% of production of these products in 2018 over all Kingspan production sites included in this EPD, and 0.52% of the total site output at the Pembridge site (125.17 tonnes).

A profile for the Kooltherm foam was created separately as this covered a range of Kooltherm products. The profile included all the impacts from the manufacture of the product, including all the data for the following sections: 'ancillary materials', 'packaging', 'fuel/energy', 'water', 'emissions to air, water and soil', 'production waste, 'other waste' and 'water discharged'. Allocation of these factors to the products was achieved by using a proportion of the total Kooltherm foam output. The foam profile was then used as an input for this (and other) end-product profiles.

Secondary data has been drawn from the BRE LINA database v2.0.70 and the background LCI datasets are based on ecoinvent v3.2.

Cut-off criteria

No inputs or outputs have been excluded. All raw materials, packaging materials, associated transport to the manufacturing site, and from the manufacturing site to the building site, process energy, water use, direct production waste, installations waste and emissions are included.

LCA Results

(MND = module not declared; AGG = aggregated)

Parameters	describing e	enviro	nmental	impacts					
			GWP	ODP	AP	EP	POCP	ADPE	ADPF
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Froduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	9.14e+0	8.20e-7	5.70e-2	1.29e-2	7.38e-3	9.27e-5	2.30e+2
Construction	Transport	A4	1.57e-1	2.99e-8	5.40e-4	1.42e-4	1.12e-4	2.64e-7	2.45e+0
process stage	Construction	A5	1.87e-1	1.72e-8	1.16e-3	2.62e-4	1.51e-4	1.86e-6	4.67e+0
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	В6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	В7	MND	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND	MND
End of life	Transport	C2	1.57e-1	2.99e-8	5.40e-4	1.42e-4	1.12e-4	2.64e-7	2.45e+0
End of life	Waste processing	СЗ	2.49e-8	1.61e-15	1.35e-10	3.09e-11	7.67e-12	3.00e-14	3.83e-7
	Disposal	C4	2.69e-3	7.09e-10	1.88e-5	6.19e-6	3.13e-6	3.82e-9	6.61e-2
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND	MND

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water; EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters	describing r	esoui	ce use, pri	mary ener	gy			
			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG
Troduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	1.99e+1	1.31e-3	1.99e+1	7.30e+1	1.59e+2	2.32e+2
Construction	Transport	A4	3.71e-2	9.25e-8	3.71e-2	2.44e+0	0.00e+0	2.44e+0
process stage	Construction	A5	3.99e-1	2.63e-5	3.99e-1	4.71e+0	0.00e+0	4.71e+0
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MRN	MND	MRN	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND
End of life	Transport	C2	3.71e-2	9.25e-8	3.71e-2	2.44e+0	0.00e+0	2.44e+0
LING OF INC	Waste processing	С3	3.31e-8	5.98e-14	3.31e-8	5.10e-7	0.00e+0	5.10e-7
	Disposal	C4	2.02e-3	5.52e-9	2.02e-3	6.65e-2	0.00e+0	6.65e-2
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water									
			SM	RSF	NRSF	FW			
			kg	MJ net calorific value	MJ net calorific value	m ³			
	Raw material supply	A1	AGG	AGG	AGG	AGG			
Product stage	Transport	A2	AGG	AGG	AGG	AGG			
Froduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG			
	Total (of product stage)	A1-3	0.00e+0	0.00e+0	0.00e+0	1.54e-1			
Construction	Transport	A4	0.00e+0	0.00e+0	0.00e+0	5.70e-4			
process stage	Construction	A5	0.00e+0	0.00e+0	0.00e+0	3.11e-3			
	Use	B1	MND	MND	MND	MND			
	Maintenance	B2	MND	MND	MND	MND			
	Repair	В3	MND	MND	MND	MND			
Use stage	Replacement	B4	MND	MND	MND	MND			
	Refurbishment	B5	MND	MND	MND	MND			
	Operational energy use	B6	MND	MND	MND	MND			
	Operational water use	В7	MND	MND	MND	MND			
	Deconstruction, demolition	C1	MND	MND	MND	MND			
	Transport	C2	0.00e+0	0.00e+0	0.00e+0	5.70e-4			
End of life	Waste processing	СЗ	0.00e+0	0.00e+0	0.00e+0	1.02e-10			
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	7.43e-5			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MD			

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other enviro	nmental info	rmatic	n describing waste cate	egories	
			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	AGG	AGG	AGG
43Product	Transport	A2	AGG	AGG	AGG
stage	Manufacturing	А3	AGG	AGG	AGG
	Total (of product stage)	A1-3	4.53e-1	5.05e-1	4.08e-4
Construction	Transport	A4	9.21e-4	2.09e-1	1.70e-5
process stage	Construction	A5	9.10e-3	8.04e-2	8.61e-6
	Use	B1	MND	MND	MND
	Maintenance	B2	MND	MND	MND
	Repair	В3	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND
	Refurbishment	B5	MND	MND	MND
	Operational energy use	B6	MND	MND	MND
	Operational water use	B7	MND	MND	MND
	Deconstructio n, demolition	C1	MND	MND	MND
End of life	Transport	C2	9.21e-4	2.09e-1	1.70e-5
LIIU OI IIIE	Waste processing	C3	5.82e-11	6.20e-10	2.81e-12
	Disposal	C4	4.97e-5	2.61e-1	4.09e-7
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

			CRU	MFR	MER	EE
			Kg	kg	kg	MJ per energy carrier
	Raw material supply	A1	AGG	AGG	AGG	AGG
Draduat atoma	Transport	A2	AGG	AGG	AGG	AGG
Product stage	Manufacturing	А3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	3.07e-2	2.78e-2	5.96e-2	0.00e+0
Construction	Transport	A4	0.00e+0	0.00e+0	0.00e+0	0.00e+0
process stage	Construction	A5	6.14e-4	5.56e-4	1.19e-3	0.00e+0
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND
	Deconstruction, demolition	C1	MND	MND	MND	MND
	Transport	C2	0.00e+0	0.00e+0	0.00e+0	0.00e+0
End of life	Waste processing	СЗ	0.00e+0	0.00e+0	2.94e+0	0.00e+0
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	0.00e+0
Potential penefits and coads beyond the system poundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and add	itional technical information							
Scenario	Parameter	Units	Results					
	Description of scenario							
A4 T	Fuel type / Vehicle type	Litre of fuel type per distance or vehicle type	Lorry >32 metric tons					
A4 – Transport to the building site	Distance:	km	523					
	Capacity utilisation (incl. empty returns)	%	86					
	Bulk density of transported products	kg/m ³	50					
A5 – Installation in the building	Description of scenario							
	Installation wastage rate	% of product	2					
	Installation waste sent to landfill	kg	0.066					
C1 to C4 End of life,	Description of scenario							
·	Transport type	Vehicle type	Lorry >32 metric tons					
	Distance	km	523					
	Crushing and compacting of waste into briquettes	MJ	1.49e-7					
	Waste for energy recovery	kg	2.94					
	Waste to landfill	kg	0.26					

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

Kingspan Insulation technical information: www.kingspanductwork.co.uk/dop

UK Statistics on Waste report that the recovery rate from non-hazardous construction and demolition waste is approx. 91% at of 2016 (from UK Statistics on Waste,

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/784263/UK_Statistics_on_Waste_statistical_notice_March_2019_rev_FINAL.pdf

CEN. Thermal insulation products for buildings - Factory made phenolic foam (PF) products – Specification. BS EN 14314 – 2009 + A1-2013. Brussels, CEN, 2013