

Statement of Verification

BREG EN EPD No.: 000351

This is to verify that the

Environmental Product Declaration provided by:

PPG Architectural Coatings UK Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

BRE Global Scheme Document SD207

This declaration is for:

Johnstone's Trade Stainaway Matt

Company Address

Huddersfield Road Birstall - Batley West Yorkshire WF17 9XA United Kingdom

08 June 2021

Operator

Emma Baker

07 June 2026

08 June 2021

Issue 01

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

IOHNSTONES

StainAway

Environmental Product Declaration

EPD Number: 000351

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013
Commissioner of LCA study	LCA consultant/Tool
PPG Architectural Coatings UK Ltd. Huddersfield Road Birstall - Batley, West Yorkshire WF17 9XA United Kingdom	William Collinge Product Stewardship Functional Expert PPG Monroeville Business and Technology Center 440 College Park Drive Monroeville , PA 15146 USA
Declared/Functional Unit	Applicability/Coverage
Johnstone's Trade Stainaway Matt to protect and decorate 1m² of substrate, suitably prepared, on the basis of one layer of paint at a spreading rate of 9 m²/L for the lifetime of the coating.	Product Specific
EPD Type	Background database
Cradle to Gate with options	Ecoinvent 3.5
Demonstra	ation of Verification
CEN standard EN 15	5804 serves as the core PCR ^a
Independent verification of the declara □Internal	ation and data according to EN ISO 14025:2010 ⊠ External
	riate ^b)Third party verifier:

Comparability

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Pat Hermon

a: Product category rules

Information modules covered

	Product		Construction			Use stage					End of life			Benefits and loads beyond		
					Related to the building fabric				ted to uilding	End-of-life				the system boundary		
A 1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{A}}$	V	$\overline{\mathbf{A}}$	$\overline{\mathbf{Q}}$	$\overline{\mathbf{A}}$								$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$	$\overline{\checkmark}$	$\overline{\mathbf{A}}$	

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

PPG Architectural Coatings UK Ltd

PPG Coatings Nederland B.V. Amsterdamseweg 14 Uithoorn, Noord-Holland 1422 AD Netherland

Construction Product:

Product Description

Johnstone's Trade Stainaway Matt is a tough premium matt emulsion designed for high traffic areas which require frequent cleaning as it helps to prevent stains setting into the paint and makes removing stains and marks easier.

The EPD for this products covers the following product variants:

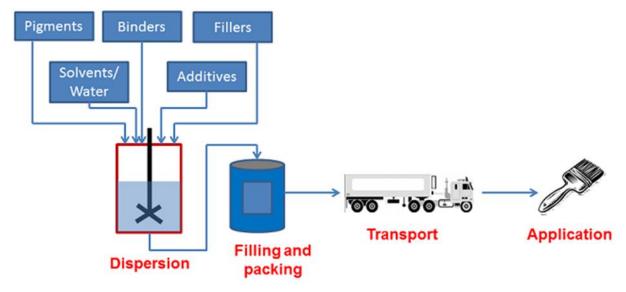
- Johnstone's Trade Stainaway Matt Brilliant White
- Johnstone's Trade Stainaway Matt Base L

In this EPD the environmental impact indicators declared are for product with the highest overall environmental impact. For Johnstone's Trade Stainaway this is the Brilliant White.

Technical Information

Property	Value, Unit
Spreading rate	10 m ² /L
Time to Touch Dry	1 hrs
Time to Recoat	4 hrs

Main Product Contents


Material/Chemical Input	%
Additives	<5%
Biocide	<0.1%
Binder	10-20%
Filler	20-30%
Glycols and Esters	<5%
Pigments	10-20%
Water	30-40%

Johnstone's Trade StainAway Matt does not contain any substances listed in the REACH Candidate List of Substances for Very High Concern.

Manufacturing Process

The manufacturing process involves the mixing and dispersing of raw materials into a homogeneous mixture. The product is then packaged for distribution to the customer.

Process flow diagram

Construction Installation

All surfaces to be painted should be clean, dry and free from loose and flaking material. Prime bare surfaces with the appropriate Johnstone's Primer. Rub down previously gloss painted surfaces with fine waterproof abrasive paper and rinse thoroughly. Stir well before use. Easy to apply by brush or roller. Do not apply in temperatures below 10°C.

Use Information

No activities are required during the use phase

End of Life

Coatings are often not removed from their substrate, so the end of life the product is that of the end of life of the underlying substrate. For interior wall paints this can be landfill or incineration.

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

Johnstone's Trade Stainaway Matt to protect and decorate $1m^2$ of substrate, suitably prepared, on the basis of two layers of paint at a spreading rate of $10 m^2/L$.

System boundary

The system boundaries of the product LCA follow the modular design defined by /EN15804/. This cradle-to-gate with options study includes the Product stage (A1-A3), Transport Stage (A4), Installation Stage (A5), Deconstruction/Demolition (C1), End-of-life transport (C2), Waste Processing (C3), and Disposal (C4).

Data sources, quality and allocation

Formulation is based on the current recipe extracted from PPG recipe systems. Data related to in-house PPG manufacturing processes has been collected from PPG reporting systems for the 2018 calendar year. This is based on recorded utility use and waste disposal and is of high quality.

For life cycle modelling of the process, SimaPro V.9.0 is used. All relevant background datasets are taken from Ecoinvent V3.5 database supplied with SimaPro and are documented in supporting Ecoinvent documentation.

Many Ecoinvent processes, such as waste disposal, are multi-input and not just for the material specified. For these processes the allocation used for the material in question is the one specified in the Ecoinvent process. Allocation of waste to reuse and waste disposal streams is made on the basis of recent data from reliable sources.

In cases where allocation is necessary, this has been performed on the basis of mass.

Cut-off criteria

Cut off criteria are: 1% of the renewable and non-renewable energy usage 1% of the mass of the process under consideration. The total neglected flows shall be no more than: 5% of the energy usage 5% of the total mass. Exceptions are if flows have significant effects of or energy use in their extraction, use or disposal, or are classed as hazardous waste, then these are specifically included. In this study the cut-off criteria has not been applied.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Paramete	rs describir	ng enviro	nmental	impacts					
			GWP	ODP	AP	EP	POCP	ADPE	ADPF
			kg CO2 equiv.	kg CFC 11 equiv.	kg SO2 equiv.	kg (PO4) ³⁻ equiv.	kg C2H4 equiv.	kg Sb equiv.	MJ, net calorific value.
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Dunadurat	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	4.60E-01	5.73E-08	3.26E-03	3.19E-04	4.15E-04	2.15E-06	6.74E+00
Construction	Transport	A4	1.25E-02	2.30E-09	5.12E-05	7.49E-06	7.01E-06	3.66E-08	1.89E-01
process stage	Construction	A5	4.25E-02	1.86E-09	1.33E-04	1.73E-05	3.56E-05	4.07E-08	6.49E-01
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
our diago	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	3.11E-05	5.49E-12	2.31E-07	4.98E-08	3.63E-08	1.75E-11	4.45E-04
E 1 (1)	Transport	C2	5.40E-04	9.99E-11	1.74E-06	2.89E-07	2.81E-07	1.66E-09	8.20E-03
End of life	Waste processing	C3	8.60E-02	7.55E-11	5.47E-06	1.82E-06	5.24E-07	1.06E-09	7.64E-03
	Disposal	C4	1.24E-02	2.10E-10	5.48E-06	1.19E-06	1.88E-06	1.14E-09	1.92E-02
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND	MND

GWP = Global Warming Potential; ODP = Ozone Depletion Potential; AP = Acidification Potential for Soil and Water;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels; EP = Eutrophication Potential;

				mary ener				
			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG
5	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	5.00E-01	1.56E-01	6.56E-01	6.46E+00	1.04E+00	7.50E+00
Construction	Transport	A4	2.13E-03	0.00E+00	2.13E-03	1.92E-01	0.00E+00	1.92E-01
process stage	Construction	A5	1.91E-01	-1.56E-01	3.53E-02	7.29E-01	1.03E-02	7.39E-01
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	3.72E-06	0.00E+00	3.72E-06	4.52E-04	0.00E+00	4.51E-04
Essa a CPC	Transport	C2	8.77E-05	0.00E+00	8.77E-05	8.33E-03	0.00E+00	8.33E-03
End of life	Waste processing	С3	2.01E-04	0.00E+00	2.01E-04	7.94E-03	0.00E+00	7.93E-03
	Disposal	C4	3.27E-04	0.00E+00	3.27E-04	1.98E-02	0.00E+00	1.98E-02
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

			SM	RSF	NRSF	FW
			kg	MJ, net calorific value.	MJ, net calorific value.	m3
	Raw material supply	A1	AGG	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	9.59E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	3.50E-05
process stage	Construction	A5	0.00E+00	0.00E+00	0.00E+00	4.91E-04
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND
Jse stage	Replacement	B4	MND	MND	MND	MND
ŭ	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	7.17E-08
and of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	1.51E-06
End of life	Waste processing	СЗ	0.00E+00	0.00E+00	0.00E+00	6.39E-06
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	2.03E-05
Potential benefits and loads beyond he system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environme	ntal information des	cribing waste ca	ategories		
			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG
	Total (of product stage)	A1-3	6.28E-02	2.45E-01	2.33E-05
Construction process stage	Transport	A4	1.21E-04	9.60E-03	1.30E-06
	Construction	A5	5.92E-03	1.25E-02	1.20E-06
	Use	B1	MND	MND	MND
	Maintenance	B2	MND	MND	MND
	Repair	В3	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND
	Refurbishment	B5	MND	MND	MND
	Operational energy use	B6	MND	MND	MND
	Operational water use	B7	MND	MND	MND
	Deconstruction, demolition	C1	4.25E-07	2.52E-06	3.07E-09
Ford of life	Transport	C2	5.15E-06	4.33E-04	5.63E-08
End of life	Waste processing	C3	1.93E-03	3.53E-04	2.28E-08
	Disposal	C4	1.56E-04	7.15E-02	1.19E-07
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

			CRU	MFR	MER	EE
			kg	kg	kg	MJ per energy carrier
	Raw material supply	A1	AGG	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
process stage	Construction	A5	0.00E+00	2.78E-03	0.00E+00	0.00E+00
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond he system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenario	Parameter	Units	Results
	Transport to the construction site is assumed to occur by heavy duty le	orry.	
A4 – Transport	Transport by Lorry		Lorry 16-32 tonne EURO5
to the	Distance: (Road)	km	300
building site	Capacity utilisation (incl. empty returns)	%	50
	Bulk density of transported products	kg/m3	1180-1380
A5 – Installation in the building	One disposable plastic sheet is used to protect the floor from drops ar application the roller and plastic sheeting will be disposed of. Based o painters where as much paint removed from the cans as possible stu lost through spills and residual paint in the can. For projects where the waste through higher levels of spills or residual paint left after the job, environmental impact accordingly. The scenario above allows for the calculation of impact for the tools at to the declared unit, however for the product related aspects it is assu before disposal of the packaging. All values are related to the declared	n the practice dies show 1.3 ere is a higher this will increand ancillaries med the paint	of professional 8 % of the paint is proportion of paint ase the for the job related
	Roller for application	kg	2.14E-03
	Polyethylene sheeting for spill protection	kg	2.28E-03
	Polypropylene roller tray	kg	4.00E-03
	Amount of paint lost during application due drips splashes, and residue in the can/bucket	%	1.3
	Disposal of steel (From primary packaging. Assume 29% landfill, 71% incineration)	kg	1.00E-02
	Disposal of polyethylene (From pallet packaging, spill sheeting and roller packaging. Assume 29% landfill, 71% incineration)	kg	1.87E-03
	Disposal of polypropylene (From primary packaging, roller components and roller tray. Assume 29% landfill, 71% incineration)	kg	5.54E-03
	Disposal of wood (From pallet. Assume 31% recycling, 48% incineration and 20% landfill)	kg	5.36E-03
	Disposal of paper (From pallet interleaves and roller packaging. Assume 79% recycling, 14.8% incineration and 6.2% landfill)	kg	3.73E-04
	Disposal of miscellaneous plastic waste (From roller. Assume 29% landfill, 71% incineration)	kg	3.84E-04
		kg	3.33E-0
	VOC Emitted		
	The service life is highly dependent on the environment in which the p EPD gives values for the first application of the coating for the lifetime environment in which it is used.	roduct is insta applicable to	alled. Hence the the coating in the
service life C1 to C4,	The service life is highly dependent on the environment in which the p EPD gives values for the first application of the coating for the lifetime	applicable to	alled. Hence the the coating in the to disposal. The
Reference service life C1 to C4, End of life	The service life is highly dependent on the environment in which the p EPD gives values for the first application of the coating for the lifetime environment in which it is used. Product is demolished with the building on which it is applied and ther disposal occurs by landfill (29.6 %), incineration with energy recovery	applicable to	the coating in the

Summary, comments and additional information

Analysis

Johnstone's Trade Stainaway Matt is available in a number of tinting bases including Brilliant White, Base L, and Base Z) for point of sale in-can tinting to give the possibility of approximately 16,000 different colours.

Analysis of the relative contributions of each Module shows that most of the impact comes from the raw materials stage (A1) for most of the indicators. This is shown in Figure 1 for the Base L. This high contribution of raw materials to the impact indicators is not unexpected. As paints are at the end of the chemical value chain much of the expenditure of energy, raw materials, processing, waste processing, etc. in bringing the product to existence has occurred prior to the entry of the raw materials onto the PPG production site.

The high contribution to the global warming indicator from Module C3 comes from the end of life scenario where a high proportion of the product is disposed via incineration with energy recovery

A further breakdown of the contribution of the different raw material types to environmental indicators in Module A1 shows that the majority of each impact comes from the titanium dioxide and the binder (Figure 2). This is typical for coatings products and not unexpected given these two raw materials are often present in high proportions and have a relatively high environmental impact.

The results presented in this EPD are for the L Base product and represent the upper limit of the environmental impact for Johnstone's Trade Stainaway Matt product group.

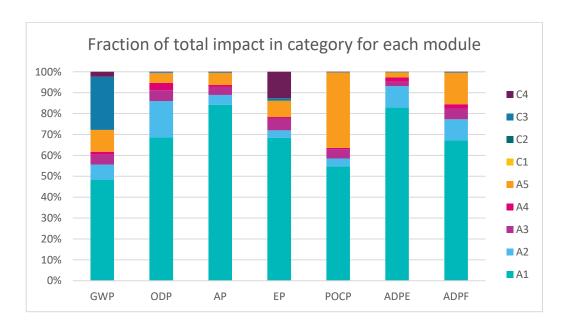


Figure 1

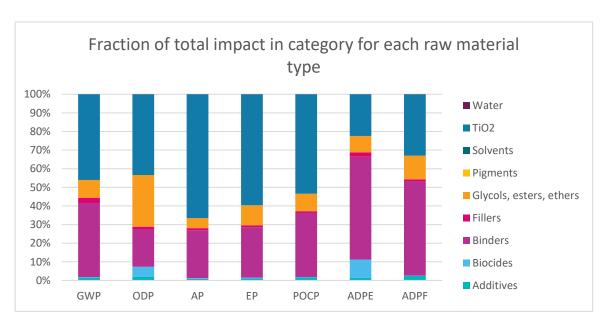


Figure 2

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.