

Statement of Verification

BREG EN EPD No.: 000343

This is to verify that the

Environmental Product Declaration provided by:

Cupa Pizarras S.A

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

BRE/Global Verified

This declaration is for: CUPACLAD® 101

Company Address

Cupa Pizarras

Office 3, 10 111 Buckingham Palace Road

Victoria, London, SW1W 0SR T: +44 (0) 0203904 3004 E: UK@cupapizarras.com

W: www.cupapizarras.com/uk

Emma Baker

05 October 2023

Issue 02

Date of this Issue

16 September 2021

15 September 2026

Expiry Date

Date of First Issue

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000343

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013
Commissioner of LCA study	LCA consultant/Tool
Cupa Pizarras	María Lago Cupa Innovación SLU Calle Macal nº 32 36213 Vigo
Declared/Functional Unit	Applicability/Coverage
1m ² of ventilated rainscreen cladding with	Drodust Average
natural slate, CUPACLAD® 101, installed on an exterior façade, during a temporary period of 60 years in a geographic and technological environment of the United Kingdom.	Product Average.
natural slate, CUPACLAD® 101, installed on an exterior façade, during a temporary period of 60 years in a geographic and technological	Background database
natural slate, CUPACLAD® 101, installed on an exterior façade, during a temporary period of 60 years in a geographic and technological environment of the United Kingdom.	-
natural slate, CUPACLAD® 101, installed on an exterior façade, during a temporary period of 60 years in a geographic and technological environment of the United Kingdom. EPD Type Cradle to Grave	Background database

Independent verification of the declaration and data according to EN ISO 14025:2010 ☐ Internal ☐ External

(Where appropriate ^b)Third party verifier: Pat Hermon

- a: Product category rules
- b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Produc	.+	Const	ruction				Jse sta	ge				End	of-life		Benefits and loads beyond
	riouuc		Const	ruction	Rel	ated to	the bui	lding fa	bric		ted to uilding		Ellu-	oi-iiie		the system boundary
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{A}}$	V	$\overline{\mathbf{A}}$	\square	$\overline{\mathbf{A}}$	\square	\square	V	V	\square	\square	\square	$\overline{\mathbf{Q}}$	$\overline{\mathbf{V}}$	V	\square	

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Cupa Pizarras La Medua s/n 32330 Sobradelo de Valdeorras (Ourense) Spain

Construction Product:

Product Description

CUPACLAD® 101 is a rainscreen cladding with CUPA natural slate. CUPACLAD® offers a horizontal installation of slate, creating a modern, natural, and durable aesthetic. The system adapts to any type of architectural project, both new and renovation.

CUPACLAD® 101, is a horizontal installation of slate with invisible fixing. The slate is laid horizontally and is secured with two stainless steel screws. The screw heads are covered by the slate of the upper row and remain invisible.

CUPACLAD® ventilated rainscreen cladding have been designed to adapt to any type of project, combining different fixing systems and natural slate formats.

The declared product 1 m2 of ventilated rainscreen cladding for the covering of façades, with the following characteristics: average thickness 7.6 mm, and average mass 30.26 kg / m2. The calculation of the average is based on the worst case.

CUPACLAD® 101 comprises three different kind of systems:

- 101 Logic: the CUPACLAD® 101 Logic system utilizes 40x20cm or 50x25cm slates fitted horizontally with invisible fixings.

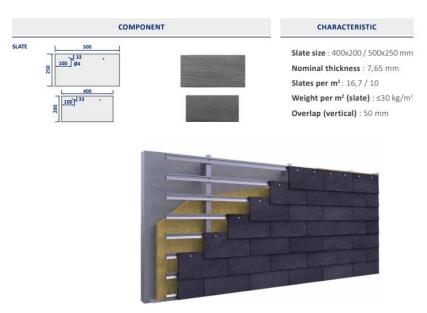


Figure 1. CUPACLAD® 101 Logic system.

- 101 Parallel: CUPACLAD® 101 Parallel features 40x25 horizontally aligned slates fitted with invisible screws.

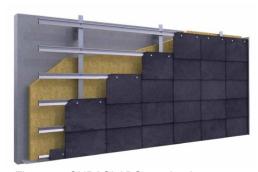


Figure 2. CUPACLAD® 101 Logic system.

 101 Random: CUPACLAD® 101 Random combines different slate sizes, creating a dynamic and unique design. The system features 50x25, 50x20 and 50x15 slates fitted horizontally with invisible fixings.

Figure 3. CUPACLAD® 101 Random system.

Technical Information

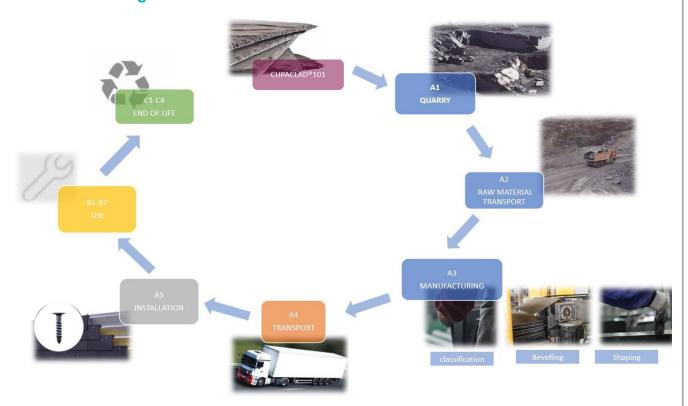
Characteristic (unit)	Standards	CUPACL	AD® 101	CUPACLAD® 101	CUPACLAD® 101
Characteristic (unit)	Standards	101 L	.ogic	101 Random	Parallel
				500 x 250	
Slate size (mm x mm)		400 x 200	500 x 250	500 x 200	400 x 250
	BS EN-12326-1			500 x 150	
Nominal thickness (mm)		7,65 ± 25%	7,65 ± 25%	7,65 ± 25%	7,5 ± 35%
Mean Water absorption (%)		0,17	0,17	0,17	0,16
Coefficient of linear thermal expansion (°C ⁻¹)	EN 14581:2006			4·10 ⁻⁶	
Characteristic Modulus of Rupture (MPa)	BS EN 12326-2 : 2011.	Longitudinal 54	Longitudinal 54	Longitudinal 54	Longitudinal 52
		Transversal 36	Transversal 36	Transversal 36	Transversal 45

Main Product Contents

CUPACLAD® 101 system utilizes slates fitted horizontally with fixings.

Material/Chemical Input	%
Natural stone, slate	99.8
Stainless steel screws	0.2

Manufacturing Process


The slate is extracted from the quarry in large blocks that are cut with a diamond blade. The blocks are then transported by truck to the quarry processing plant.

The slate undergoes 3 phases at the processing plant prior to being packaged:

- Sawing: The large blocks of slate extracted from the quarry are sawn into different sizes in accordance with the size of the slate to be produced.
- Shaping: Then, workers cut each block into sheets, treating each item with meticulous care, all of which
 is done by hand.
- Bevelling: Finally, the corners of each item are bevelled.

After classification, the slates are counted and packaged on wooden pallets for storage and subsequent delivery.

Process flow diagram

Construction Installation

The installation of CUPACLAD® 101 natural slate ventilated rainscreen cladding is carried out by means of self-drilling screws.

Each slate must be aligned with the upper edge of the horizontal profile and fitted with two stainless steel. CUPACLAD® 101 self-drilling screws.

The installation is done with mechanical assistance.

This step includes:

- The production and transport of screws.
- Power consumption of a drill.
- Transport and end of life of site waste.

Use Information

No maintenance or replacement during the working life is considered.

The slates do not require any special maintenance. CUPACLAD® systems do not require any treatment.

End of Life

The deconstruction / demolition of the building site is done with mechanical assistance. The dismantling of the slates is carried out using a drill.

This step includes the transport of the slate and the screw after the deconstruction of the site to the place of its treatment or deposit.

90% of slate can be recovered from demolition for re-use in new buildings and the remaining 10% is directly sent to landfill as inert disposal.

Thanks to the installation and disassembly method of slate, it is only necessary to clean the slate with water under pressure to recover the product and ensure its performance before being used on another job.

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

The functional unit chosen for the CUPACLAD® 101 system is the amount of material needed to install 1m² of natural slate rainscreen cladding, installed on an exterior façade, during a temporary period of 60 years in a geographic and technological environment of the United Kingdom in 2020.

System boundary

In accordance with the modular approach as defined in EN 15804:2012, this cradle-to-grave EPD includes the product stage A1 to C4. Benefits and loads beyond the system boundary (Module D) have not been included.

Data sources, quality and allocation

Manufacturing data is based on specific consumption data from CUPA PIZARRAS in 2019. Generic data is obtained from Ecoinvent v.3.5. Modelling of CUPACLAD® 101 life cycle was performed using SimaPro v9.0.049. LCA software from PRé consultants.

There are no co-products in the production, no allocation criteria were considered, 100% of all the inputs have been considered.

Cut-off criteria

All raw materials, packaging materials and consumable item inputs, and associated transport to the plant, process energy and water use are included. The production process for raw materials and energy flows that show very small amounts (<1%) are not included.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
			kg CO₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
1 Toddet Stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	3.26E+00	1.42E-06	2.31E-02	5.58E-03	1.15E-03	8.64E-06	1.17E+02		
Construction	Transport	A4	3.91E+00	7.62E-07	1.46E-02	2.98E-03	7.26E-04	7.29E-06	6.26E+01		
process stage	Construction	A5	5.94E-01	4.70E-08	3.12E-03	2.77E-03	1.89E-04	9.44E-06	6.20E+00		
	Use	B1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Maintenance	B2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Repair	В3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Use stage	Replacement	B4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Refurbishment	B5	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Operational energy use	B6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Operational water use	B7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Deconstruction, demolition	C1	9.58E-02	1.25E-08	7.62E-04	1.79E-04	2.74E-05	6.22E-08	1.08E+00		
End of life	Transport	C2	1.25E+00	2.30E-07	4.01E-03	9.37E-04	2.04E-04	3.74E-06	1.89E+01		
Life of file	Waste processing	СЗ	2.16E-02	2.82E-09	1.71E-04	4.02E-05	6.17E-06	1.40E-08	2.43E-01		
	Disposal	C4	1.35E-02	5.42E-09	1.00E-04	2.21E-05	3.80E-06	1.47E-08	4.43E-01		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.76E+00	-1.26E-06	-1.99E-02	-4.71E-03	-9.46E-04	-7.22E-06	-1.02E+02		

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water; EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG		
Floudet stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	2.38E+01	6.69E+00	3.04E+01	0.00E+00	8.79E+01	8.79E+01		
Construction	Transport	A4	8.76E-01	0.00E+00	8.76E-01	0.00E+00	0.00E+00	0.00E+00		
process stage	Construction	A5	1.70E+00	4.54E-01	2.15E+00	0.00E+00	5.54E-01	5.54E-01		
	Use	B1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Maintenance	B2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Repair	В3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Use stage	Replacement	B4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Refurbishment	B5	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Operational energy use	B6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Operational water use	B7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Deconstruction, demolition	C1	5.09E-01	4.54E-01	9.63E-01	0.00E+00	5.54E-01	5.54E-01		
End of life	Transport	C2	2.36E-01	0.00E+00	2.36E-01	0.00E+00	0.00E+00	0.00E+00		
Liiu Oi iiie	Waste processing	СЗ	1.15E-01	1.02E-01	2.17E-01	0.00E+00	1.25E-01	1.25E-01		
	Disposal	C4	6.22E-03	0.00E+00	6.22E-03	0.00E+00	0.00E+00	0.00E+00		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-7.66E+00	-6.02E+00	-1.37E+01	0.00E+00	-7.91E+01	-7.91E+01		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water									
			SM	RSF	NRSF	FW			
			kg	MJ net calorific value	MJ net calorific value	m³			
	Raw material supply	A1	AGG	AGG	AGG	AGG			
Draduot ataga	Transport	A2	AGG	AGG	AGG	AGG			
Product stage	Manufacturing	А3	AGG	AGG	AGG	AGG			
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	4,02E-02			
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	1.20E-02			
process stage	Construction	A5	0.00E+00	0.00E+00	0.00E+00	3.26E-03			
	Use	B1	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	Maintenance	B2	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	Repair	В3	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Use stage	Replacement	B4	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	Refurbishment	B5	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	Operational energy use	B6	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	Operational water use	В7	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	8.65E-04			
Final of IX	Transport	C2	0.00E+00	0.00E+00	0.00E+00	3.11E-03			
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	1.64E-02			
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	5.29E-04			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-3.45E-02			

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other enviro	nmental info	rmatic	on describing waste cate	egories	
			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	AGG	AGG	AGG
Droduct store	Transport	A2	AGG	AGG	AGG
Product stage	Manufacturing	А3	AGG	AGG	AGG
	Total (of product stage)	A1-3	9.57E-01	9.96E-01	9.22E-04
Construction	Transport	A4	3.90E-01	5.54E+00	4.34E-04
process stage	Construction	A5	7.01E-01	2.63E+00	3.62E-05
	Use	B1	0.00E+00	0.00E+00	0.00E+00
	Maintenance	B2	0.00E+00	0.00E+00	0.00E+00
	Repair	В3	0.00E+00	0.00E+00	0.00E+00
Use stage	Replacement	B4	0.00E+00	0.00E+00	0.00E+00
	Refurbishment	B5	0.00E+00	0.00E+00	0.00E+00
	Operational energy use	В6	0.00E+00	0.00E+00	0.00E+00
	Operational water use	В7	0.00E+00	0.00E+00	0.00E+00
	Deconstructio n, demolition	C1	3.59E-02	3.69E-02	1.55E-05
End of Pfe	Transport	C2	1.17E-01	9.97E-01	1.30E-04
End of life	Waste processing	СЗ	8.08E-03	8.30E-03	3.49E-06
	Disposal	C4	1.11E-03	3.18E+00	3.10E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-7.90E-01	-7.97E-01	-8.20E-04

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

			CRU	MFR	MER	EE
			kg	kg	kg	MJ per energy carrier
	Raw material supply	A1	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG
r roddol slago	Manufacturing	А3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
process stage	Construction	A5	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Use	B1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Maintenance	B2	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Repair	В3	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use stage	Replacement	B4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Refurbishment	B5	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Operational energy use	B6	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Operational water use	B7	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.1.d of 1110	Waste processing	СЗ	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	2.72E+01	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenario	Parameter	Units	Results
	CUPACLAD® 101 systems are transport		
	boat. CUPACLAD@101 is transported from th factory to the various sites in UK is carrie 52% of the material is transport and train. 48% of the material is transport heavy truck. The material is the	e factory gate to the building site. Tr	ansport from the coat: es in UK by lorr Vigo (Spain) buited Kingdom b
	Fuel type/ Vehicle type	Transport, freight, lorry >32 metric ton, EURO MIX	Diesel
	Distance:	km	2561km
	Capacity utilisation (incl. empty returns)	%	50
4 - Transport to the uilding site	Bulk density of transported products	kg/m³	2800
bullaing site	Fuel type/ Vehicle type	Transport, freight, sea, transoceanic	38 % Diesel 62 % steam turbine
	Distance:	km	1464 km
	Capacity utilisation (incl. empty returns)	%	65%
	Bulk density of transported products	kg/m ³	2800
	Fuel type/ Vehicle type	Transport, freight train {Europe without Switzerland} electricity Cut-off, U	electric
	Distance:	km	50.45
	Capacity utilisation (incl. empty returns)	%	50
	Bulk density of transported products	kg/m³	2800
A5 – Installation in he building	The installation of the CUPACLAD®101 by means of self-drilling screws. The instance The waste from this stage consists of packaging products of the slates (polypro These residues are landfilled.	allation is done with mechanical assist the slates broken during installation	ance,
	Screws needed to install 1 m2 façade	kg/m ²	0.06
	Power consumption of a drill	kWh/m2	0.28
	packaging residues: Wood	kg/m ²	0.64
	packaging reclades. Weed	Ng/III	

Scenarios and addi	tional technical information						
Scenario	Parameter	Units	Results				
	Installation Wastage Rate	%	5				
B2 – Maintenance	No maintenance required						
B3 – Repair	No repair process required						
B4 – Replacement	No replacement considerations required						
B5 – Refurbishment	No refurbishment process required						
Reference service life	CUPACLAD® 101 is made of natural slate, which is a durable material, it can last up to 100 ¹ years, as shown by several studies. However, it was chosen a reference service life is the same as for buildings and normally set to 60 years ² .						
B6 – Use of energy; B7 – Use of water	No use phase requirements of either water	er or energy required					
C1 to C4 End of life,	The deconstruction of CUPACLAD® 101 consumption of using the drill has been of Thanks to the installation and disassembly with water under pressure to recover the pon another job (C3)	onsidered in this stage (C1).	o clean the slate				
	Distance of transport to the end of life (C2)	km	250				
	Quantity of water used	I/m²	16.2				
	Electricity consummation	kWh/m²	0.063				
	Slate from demolition to landfill	%	10				
	Slate from demolition for re-use	%	90				

Summary, comments, and additional information

Interpretation

The Figure below represents the complete life cycle assessment of the CUPACLAD® 101 system. The production and transport phases are the major contributors. The environmental burdens for the impact categories (GWP, ODP, AP, EP and POCP) result from the associated emissions directly linked to fossil fuel and electricity consumption in the transport of materials and production process.

¹ J A Walsh. La durabilité des ardoises de couverture Heavy 3 de San Pedro de Trones, Ourense, Espagne. Mars 2007, 18 pages

 $^{^{2}\,}$ Dr Jo Mundy. The Green Guide Explained. BRE Centre for sustainable Products. March 2015

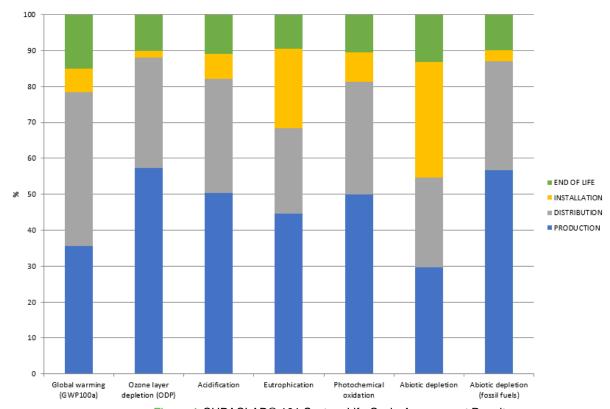
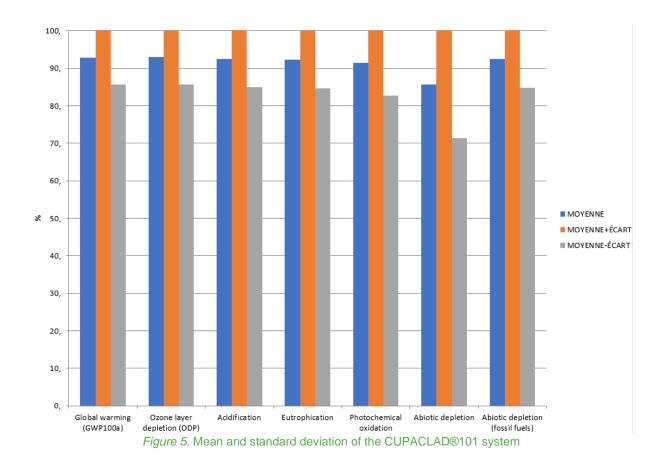



Figure 4. CUPACLAD® 101 System Life Cycle Assessment Results.

The following figures show the standard desviation from the mean of the LCA results for each value:

bre

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

PRé Consultants by, SimaPro 8 LCA Software 2013. http://www.pre-sustainability.com/

Ecoinvent Centre. Swiss Centre for Life Cycle Inventories. http://www.ecoinvent.org/

https://www.cupapizarras.com/uk/rainscreen-cladding/systems/#sistemas_101

https://www.bbacerts.co.uk/search/?doc=%2F1AsZ8k8K9A3jKX4Fa8EC7M%3D

https://www.cupapizarras.com/uk/rainscreen-cladding/downloads/