

Statement of Verification

BREG EN EPD No.: 000046 Issue 03

This is to verify that the

Environmental Product Declaration provided by:

PPG Architectural Coatings UK Limited

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for:

Johnstone's Trade Acrylic Durable Eggshell

Company Address

Huddersfield Road Birstall Batley West Yorkshire WF17 9XA

 EPD

Emma Baker 28 May 2020 Operator Date of this Issue

27 March 2015

27 May 2025

Date of First Issue

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

BF1805-C Rev 0.1 Page 1 of 14 © BRE Global Ltd, 2017

Environmental Product Declaration

EPD Number: 000046

General Information

	Applicable Product Category Rules								
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013								
Commissioner of LCA study	LCA consultant/Tool								
PPG Architectural Coatings UK Ltd. Huddersfield Road Birstall - Batley, West Yorkshire WF17 9XA United Kingdom	Matthew Percy Product Stewardship Functional Expert PPG Nederland B.V. Amsterdamseweg 14 1422 AD, Uithoorn The Netherlands								
Declared/Functional Unit	Applicability/Coverage								
Johnstone's Trade Acrylic Durable Eggshell to protect and decorate 1m² of substrate, suitably prepared, on the basis of one layer of paint at a spreading rate of 12.5 m²/L	Product Specific								
EPD Type	Background database								
Cradle to Gate with options	Ecoinvent 3.5								
Demonstra	ation of Verification								
CEN standard EN 15804 serves as the core PCR ^a									
Independent verification of the declaration and data according to EN ISO 14025:2010 □Internal □ External									
(Where appropriate ^b)Third party verifier: Jane Anderson									

Comparability

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Product Constru						Use sta	ige				Foot	- 6 116-		Benefits and loads beyond	
ı			Const	ruction	Related to the building fabric					Related to End-of-life the building			the system boundary			
A 1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{Q}}$	V	V	$\overline{\mathbf{Q}}$	\square								$\overline{\mathbf{Q}}$	$\overline{\checkmark}$	$\overline{\mathbf{Q}}$	$\overline{\mathbf{Q}}$	

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

PPG Architectural Coatings UK Ltd Huddersfield Road Birstall - Batley, West Yorkshire WF17 9XA United Kingdom

Construction Product:

Product Description

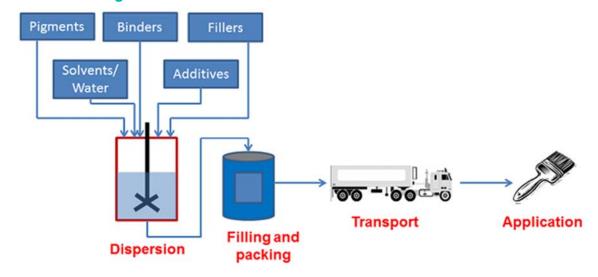
Johnstone's Trade Acrylic Durable Eggshell is a premium quality, water-based, mid sheen finish formulated for interior use on walls, ceilings, wood and metal work. It provides a low odour, quick drying finish that is resistant to condensation and regular cleaning, making it ideal for use in kitchens, bathrooms, hospitals, hotels, food stores, bakeries and public buildings.

The EPD for this products covers the following product variants:

- Johnstone's Trade Acrylic Durable Eggshell Base L
- Johnstone's Trade Acrylic Durable Eggshell Base M
- Johnstone's Trade Acrylic Durable Eggshell Base D
- Johnstone's Trade Acrylic Durable Eggshell Base Z
- Johnstone's Trade Acrylic Durable Eggshell Base Z2

Technical Information

Property	Value, Unit
Spreading rate	11-13 m ² /L
Time to Touch Dry	1-2 hrs
Time to Recoat	3-4 hrs


Main Product Contents

Material/Chemical Input	%
Additives	1-2%
Biocide	0.06%
Binder	20-25%
Filler	9-15%
Glycols and Esters	<3%
Pigments	<15%
Water	50-65%

Manufacturing Process

The manufacturing process involves the mixing and dispersing of raw materials into a homogeneous mixture. The product is then packaged for distribution to the customer.

Process flow diagram

Construction Installation

All surfaces to be painted should be clean, dry and free from loose and flaking material. Prime bare surfaces with the appropriate Johnstone's Trade Primer. Rub down previously gloss painted surfaces with fine waterproof abrasive paper and rinse thoroughly. Stir well before use. Easy to apply by brush or roller. Do not apply in temperatures below 10°C.

Use Information

No activities are required during the use phase

End of Life

BF1805-C Rev 0.0

Coatings are often not removed from their substrate, so the end-of-life disposal of the product is that of the end-of-life dispoal of the underlying substrate. For interior wall paints this can be landfill or incineration.

© BRE Global Ltd, 2017

Page 4 of 14

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

Johnstone's Trade Acrylic Durable Eggshell to protect and decorate 1m² of substrate, suitably prepared, on the basis of one layer of paint at a spreading rate of 12 m²/L.

System boundary

The system boundaries of the product LCA follow the modular design defined by /EN15804/. This cradle-to-gate with options study includes the Product stage (A1-A3), Transport Stage (A4), Installation Stage (A5), Deconstruction/Demolition (C1), End-of-life transport (C2), Waste Processing (C3), and Disposal (C4).

Data sources, quality and allocation

Formulation is based on the current recipe extracted from PPG recipe systems. Data related to in-house PPG manufacturing processes has been collected from PPG reporting systems for the 2018 calendar year. This is based on recorded utility use and waste disposal and is of high quality.

For life cycle modelling of the process, SimaPro V.9.0 is used. All relevant background datasets are taken from Ecoinvent V3.5 database supplied with SimaPro and are documented in supporting Ecoinvent documentation.

Many Ecoinvent processes, such as waste disposal, are multi-input and not just for the material specified. For these processes the allocation used for the material in question is the one specified in the Ecoinvent process. Allocation of waste to reuse and waste disposal streams is made on the basis of recent data from reliable sources.

In cases where allocation is necessary, this has been performed on the basis of mass.

Cut-off criteria

Cut off criteria are: 1% of the renewable and non-renewable energy usage 1% of the mass of the process under consideration. The total neglected flows shall be no more than: 5% of the energy usage 5% of the total mass. Exceptions are if flows have significant effects of or energy use in their extraction, use or disposal, or are classed as hazardous waste, then these are specifically included.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO₄)³- equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Froduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	2.15E-01	2.33E-08	1.66E-03	1.27E-04	3.78E-04	6.77E-07	3.53E+00		
Construction	Transport	A4	5.79E-03	1.07E-09	1.87E-05	3.10E-06	3.01E-06	1.78E-08	8.79E-02		
process stage	Construction	A5	4.14E-02	1.40E-09	1.25E-04	1.57E-05	2.57E-05	2.10E-08	7.26E-01		
	Use	B1	MND	MND	MND	MND	MND	MND	MND		
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND		
	Repair	В3	MND	MND	MND	MND	MND	MND	MND		
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND		
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND		
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND		
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND		
	Deconstruction, demolition	C1	1.76E-05	3.11E-12	1.31E-07	2.82E-08	2.05E-08	9.89E-12	2.52E-04		
Final of life	Transport	C2	2.54E-04	4.69E-11	8.18E-07	1.36E-07	1.32E-07	7.78E-10	3.85E-03		
End of life	Waste processing	СЗ	7.26E-02	6.37E-11	4.62E-06	1.54E-06	4.43E-07	8.93E-10	6.45E-03		
	Disposal	C4	7.24E-03	5.89E-11	1.70E-06	3.98E-07	5.23E-07	3.49E-10	5.44E-03		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND	MND		

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters	describing r	esour	ce use, pri	imary ener	ду			
			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG
Draduct store	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	2.77E-01	1.62E-01	4.38E-01	3.13E+00	7.56E-01	3.88E+00
Construction	Transport	A4	9.40E-04	0.00E+00	9.40E-04	8.93E-02	0.00E+00	8.93E-02
process stage	Construction	A5	3.51E-02	-1.61E-01	3.67E-02	8.27E-01	-2.42E-01	8.27E-01
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	2.11E-06	0.00E+00	2.11E-06	2.56E-04	0.00E+00	2.56E-04
End of life	Transport	C2	4.12E-05	0.00E+00	4.12E-05	3.91E-03	0.00E+00	3.91E-03
End of life	Waste processing	СЗ	1.70E-04	-1.28E-04	1.70E-04	6.70E-03	-2.24E-01	6.70E-03
	Disposal	C4	9.58E-05	-8.96E-05	9.58E-05	5.61E-03	-1.56E-01	5.60E-03
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m³
	Raw material supply	A1	AGG	AGG	AGG	AGG
Dec divet ete ee	Transport	A2	AGG	AGG	AGG	AGG
Product stage	Manufacturing	А3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	4.71E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	1.62E-05
orocess stage	Construction	A5	0.00E+00	0.00E+00	0.00E+00	4.68E-04
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND
Jse stage	Replacement	B4	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	4.06E-08
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	7.08E-07
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	5.40E-06
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	5.66E-06
Potential penefits and pads beyond ne system poundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories								
			HWD	NHWD	RWD			
			kg	kg	kg			
	Raw material supply	A1	AGG	AGG	AGG			
Duadinat atoms	Transport	A2	AGG	AGG	AGG			
Product stage	Manufacturing	A3	AGG	AGG	AGG			
	Total (of product stage)	A1-3	2.76E-02	1.30E-01	1.09E-05			
Construction	Transport	A4	5.52E-05	4.64E-03	6.04E-07			
process stage	Construction	A5	3.52E-03	9.69E-03	1.07E-06			
	Use	B1	MND	MND	MND			
	Maintenance	B2	MND	MND	MND			
	Repair	В3	MND	MND	MND			
Use stage	Replacement	B4	MND	MND	MND			
	Refurbishment	B5	MND	MND	MND			
	Operational energy use	B6	MND	MND	MND			
	Operational water use	В7	MND	MND	MND			
	Deconstructio n, demolition	C1	2.41E-07	1.43E-06	1.74E-09			
Ford of 1965	Transport	C2	2.42E-06	2.03E-04	2.65E-08			
End of life	Waste processing	C3	1.63E-03	2.98E-04	1.92E-08			
	Disposal	C4	1.30E-04	1.89E-02	3.24E-08			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

			CRU	MFR	MER	EE
			kg	kg	kg	MJ per energy carrier
	Raw material supply	A1	AGG	AGG	AGG	AGG
Draduat ataga	Transport	A2	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
process stage	Construction	A5	0.00E+00	2.76E-03	0.00E+00	0.00E+00
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND
Jse stage	Replacement	B4	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND
	Operational water use	В7	MND	MND	MND	MND
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Waste processing	СЗ	0.00E+00	0.00E+00	0.00E+00	2.24E-01
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential penefits and coads beyond he system coundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and addi	tional technical information								
Scenario	Parameter	Units	Results						
	Transport to the construction site is assumed to occur by heavy duty lorry.								
A4 – Transport to the building site	Transport by Lorry		Lorry 16-32 tonne EURO5						
	Distance: (Road)	km	300						
	Capacity utilisation (incl. empty returns)	%	50						
	Bulk density of transported products	kg/m ³	1090-1230						
A5 – Installation in the building	The coating is applied to the interior wall surface using a rol 50 m². One disposable plastic sheet is used to protect the flentire job. After application the roller and plastic sheeting willost through spills and residual paint in the can. The scenario above allows for the calculation of impact for trelated to the declared unit, however for the product related completely used before disposal of the packaging. All values	oor from drops and Il be disposed of. 1' he tools and ancilla aspects it is assum	spills for the % of the paint is ries for the job and the paint is						
	Roller for application	kg	2.14 × 10 ⁻³						
	Polyethylene sheeting for spill protection	kg	2.28 × 10 ⁻²						
	Polypropylenes roller tray	kg	4.00 × 10 ⁻³						
	Amount of paint lost during application due drips splashes, and residue in the can/bucket	%	1						
	Disposal of steel (From primary packaging. Assume 29% landfill, 71% incineration)	kg	7.46 × 10 ⁻³						
	Disposal of polyethylene (From spill sheeting and brush packaging. Assume 29% landfill, 71% incineration)	kg	5.65 × 10 ⁻⁵						
	Disposal of polypropylene (From roller components and roller tray. Assume 29% landfill, 71% incineration)	kg	5.54 × 10 ⁻³						
	Disposal of wood (From pallet and brush. Assume 31% recycling, 48% incineration and 20% landfill)	kg	6.09 × 10 ⁻³						
	Disposal of miscellaneous plastic waste (From brush. Assume 29% landfill, 71% incineration)	kg	5.46 × 10 ⁻⁴						
	VOC Emitted	kg	1.53 × 10 ⁻⁴						
Reference service life	The service life is highly dependent on the environment in w the EPD gives values for the first application of the coating f coating in the environment in which it is used.	or the lifetime appli	cable to the						
C1 to C4 End of life,	Product is demolished with the building on which it is applied the disposal occurs by landfill (29.6 %), incineration with en incineration without energy recovery (5 %).								
	Transport distance to incineration/landfill	km	30						
	Amount disposed at end of life	kg	4.43 × 10 ⁻²						

Summary, comments and additional information

Analysis

Johnstone's Trade Acrylic Durable Eggshell is available in a number of tinting bases Base L, Base D, Base M, Base Z and Base Z2) for point of sale in-can tinting to give the possibility of approximately 16,000 different colours.

Analysis of the relative contributions of each Module shows that most of the impact comes from the raw materials stage (A1) for most of the indicators. This is shown in Figure 1 for the Base L. This high contribution of raw materials to the impact indicators is not unexpected. As paints are at the end of the chemical value chain much of the expenditure of energy, raw materials, processing, waste processing, etc. in bringing the product to existence has occurred prior to the entry of the raw materials onto the PPG production site.

The high contribution to the global warming indicator from Module C3 comes from the end of life scenario where a high proportion of the product is disposed via incineration with energy recovery

A further breakdown of the contribution of the different raw material types to environmental indicators in Module A1 shows that the majority of each impact comes from the titanium dioxide and the binder (Figure 2). This is typical for coatings products and not unexpected given these two raw materials are often present in high proportions and have a relatively high environmental impact.

The results presented in this EPD are for the L Base product and represent the upper limit of the environmental impact for Johnstone's Trade Acrylic Durable Eggshell product group.

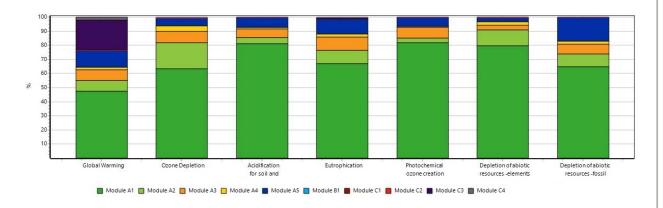


Figure 1

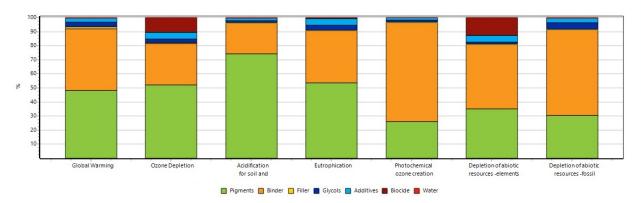


Figure 2

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.