

Statement of Verification

BREG EN EPD No.: 000633

Issue 01

This is to verify that the

Environmental Product Declaration provided by:

Axis Entrance Systems Limited

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and

BRE Global Scheme Document SD207

This declaration is for:

1 unit T100 Telescopic 100 mm (297 kg) and T55 Telescopic 55 mm (295 kg)

Company Address

Axis Entrance Systems Limited Unit 7a Queens Park Industrial Estate Studland Road Northampton NN2 6NA

Emma Baker

Operator

19 September 2024

Date of this Issue

19 September 2024

Signed for BRE Global Ltd

Date of First Issue

18 September 2029

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

BF1805-C-ECOP Rev 0.3 Page 1 of 25 © BRE Global Ltd, 2022

Environmental Product Declaration

EPD Number: 000633

General Information

BRE Environmental Profiles 2023 Product Category Rules
for Type III environmental product declaration of construction products to EN 15804+A2 PN 514 Rev 3.1
LCA consultant/Tool
Flavie Lowres/LINA A2
Applicability/Coverage
Product specific.
Background database
Ecoinvent 3.8
tion of Verification
804 serves as the core PCR ^a
tion and data according to EN ISO 14025:2010 ⊠ External
iate ^b)Third party verifier: ger Connick
i

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019 for further guidance

Information modules covered

	Product		Const	ruction		Use stage						End-of-life			Benefits and loads beyond					
	rioduc		Const	ruction	Rel	ated to	the bui	lding fa	bric		Related to the building		End-of-		End-or-life		Ena-oi-ille			the system boundary
A 1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D				
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential				
$\overline{\mathbf{A}}$	$\overline{\mathbf{Q}}$	V										$\overline{\mathbf{A}}$	$\overline{\checkmark}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{Q}}$	$\overline{\checkmark}$				

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Axis Entrance Systems Limited Unit 7a Queens Park Industrial Estate Studland Road Northampton NN2 6NA

Construction Product:

Product Description

Flo-Motion® door sets are manual aluminium framed sliding internal glazed door system primarily used within the Healthcare sector. They feature recirculating ball guides on a special low resistance linear track with a damper mechanism. The door sets are fabricated using extruded aluminium profiles and include a 'goalpost' frame.

The aluminium door set is formed from non-thermal aluminium extruded box section and include a frame consisting of two jambs (152mm and 100mm x 45mm profiles) and a specifically designed 165mm x 178mm integral transom bar with reinforced fixing points to accept multiple tracks and heavy doors.

The sliding door panels (fast & slow) to be connected by a unique sequencing device to allow doors to function as one. The secondary door (slow) to be prepared with a concealed bottom channel to operate with a floor mounted nylon guide. The primary door (fast) to be prepared to accept a floating bottom guide connected to the secondary panel. Doors are fabricated from various profiles using 100mm x 47mm rails and 55mm or 100mm stiles.

The fixed panel is fabricated from similar profiles as the doors and secured within the frame structure by two aluminium channels. The glass panels are made of laminated glass. The doors modelled in this EPD assume that there is no blind fitted.

The telescopic doors were designed "in line" applications for areas where space is limited, and the largest possible clear opening is required. The T55 offers a more slimline appearance using 55mm stiles with T100 using 100mm stiles.

The door schedule is provided below:

Door Type	Width	Height	Total Weight/Door
T55 Telescopic 55 mm	3000 mm	2400 mm	295 kg
T100 Telescopic 100 mm	3000 mm	2400 mm	297 kg

Ref: <u>axisflomotionbrochure_0.pdf (axisentrances.com)</u> – the weight provided above are for a mid-size door for each range.

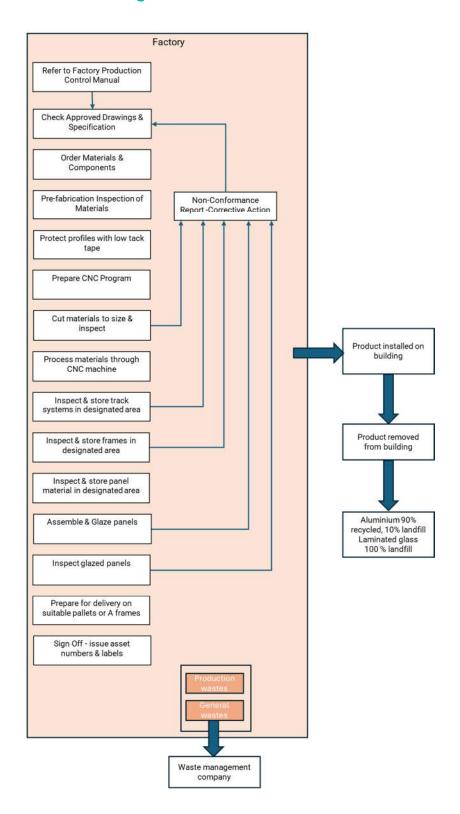
T55 Telescopic 55 mm

T100 Telescopic 100 mm

Technical Information

A typical Flo-Motion® entrance door set (representative of the whole Flo-Motion® door set range) has been independently tested to BS- EN1527:2019 - Digit 9 - Durability Grade 6 for 1,000,000 cycles.

Main Product Contents


Material/Chemical Input	%
Aluminium extruded	44-47%
Glass	48-51%
Stainless steel	2.5-3%
Handles	<2%
Plastic	<2%

Manufacturing Process

All components are brought to site. Most components are cut to size on site, apart from the glazed panels which are brought to site to the right size. All components are assembled on site. The door units are packaged and prepared for delivery.

Process flow diagram

End of Life

C1: All components are disassembled using a very small amount of energy and assumed to be zero in this EPD. this assumption is based on actual practice.

C2: all elements of the system can be disassembled and recycled through commonly available waste management processing plant estimated to be 50 km from a typical site

C3: no processing is required

C4: It was assumed the following recycling rate, based on and general practice:

-aluminium and stainless steel are widely recycled and based on BRE's PCR for EN15804+A2:2019 (BRE PN514 EN15804+A2 PCR V3.1.pdf (greenbooklive.com)), it was assumed that 95% was recycled and 5% sent to landfill

-laminated glass is typically hard to recycled, so it was assumed that it was 100% sent to landfill

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1 unit T100 Telescopic 100 mm (297 kg) and T100 Telescopic 55 mm (295 kg)

System boundary

In accordance with the modular approach as defined in EN15804:2012+A2:2019, this cradle-to-gate EPD includes the processes covered in the manufacturing site A1 to A3. It also includes C1 to C4 and module D.

Data sources, quality and allocation

Specific primary data derived from Axis Entrance Systems Ltd have been modelled using LINA v2 software for the period 1st April 2022 to 31st March 2023. In accordance with the requirements of EN15804, the most current available data has been used. Secondary data has been obtained for all remaining upstream and downstream processes that are beyond the control of the manufacturer from the ecoinvent 3.8 database. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs, according to the requirements specified in EN15804+A2:2019. The T100 Telescopic 100 mm and T100 Telescopic 55 mm are not the only products manufactured at the Axis Entrance factory. An allocation by mass of the data has been carried out for energy, water and office wastes as follow:

Product descr	% allocation
T55 Telescopic 55 mm	1%
T100 Telescopic 100 mm	40%

The raw materials quantities were uplifted to account for the difference in the mass balance results. Production wastes has been specifically allocated for each product based on factory data.

Quality Level Geographical

Datasets representative of UK electricity have been selected from the ecoinvent LCI. The quality level of time and technological representativeness is good as the background LCI datasets are based on ecoinvent v3.8 which was compiled in 2021. Therefore, the most appropriate LCA data have been used.

The GWP of the dataset used for this EPD is: 1 kWh UK electricity = 2E-01 kgCO2eq (Electricity GB (kWh) market for electricity, medium voltage)

Cut-off criteria

This study includes the manufacturing of 1 unit T100 Telescopic 100 mm and T100 Telescopic 55 mm and the end of life scenarios of these products (modules C and D). The manufacturing process is mainly an assembly process, so there are no emissions to air, water and soil.

LCA Results - 1 unit T100 Telescopic 100 mm (297 kg)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts												
Taramete	as describing	CIIV	GWP-total	GWP- fossil	GWP- biogenic	GWP-luluc	ODP	AP	EP- freshwater			
			kg CO ₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq						
	Raw material supply	A1	2.47E+03	2.47E+03	-2.55E+00	6.28E+00	1.13E-04	1.66E+01	8.08E-01			
	Transport	A2	5.34E+00	5.33E+00	6.66E-03	2.45E-03	1.20E-06	2.39E-02	4.68E-04			
Product stage	Manufacturing	А3	1.28E+02	1.26E+02	2.14E+00	7.78E-02	1.05E-05	2.07E-01	1.24E-02			
ŭ	Total (Consumption grid)	A1 -3	2.60E+03	2.60E+03	-4.03E-01	6.36E+00	1.25E-04	1.68E+01	8.21E-01			
	etals 95% recycled ass 0% recycled	and										
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
End of Re	Transport	C2	2.47E+00	2.47E+00	2.10E-03	9.69E-04	5.71E-07	1.00E-02	1.59E-04			
End of life	Waste processing	СЗ	4.38E-01	4.37E-01	1.54E-04	4.37E-05	9.35E-08	4.55E-03	1.36E-05			
	Disposal	C4	1.57E+01	1.56E+01	1.59E-02	2.11E-03	5.84E-07	1.81E-02	5.99E-04			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-7.90E+02	-7.91E+02	2.32E+00	-1.05E+00	-2.34E-05	-5.04E+00	-2.36E-01			

GWP-total = Global warming potential, total; GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

Paramete	rs describing	envir	onmental	impacts					
			EP-marine	EP- terrestrial	POCP	ADP- mineral& metals	ADP-fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence
	Raw material supply	A1	2.74E+00	2.84E+01	8.14E+00	1.45E-02	2.51E+04	7.03E+02	1.99E-04
Product	Transport	A2	7.20E-03	7.89E-02	2.47E-02	3.57E-05	8.01E+01	4.23E-01	4.93E-07
stage	Manufacturing	A3	9.20E-02	6.93E-01	1.88E-01	4.68E-04	2.84E+03	1.43E+01	1.63E-06
	Total (Consumption grid)	A1-3	2.84E+00	2.92E+01	8.35E+00	1.50E-02	2.80E+04	7.18E+02	2.01E-04
	etals 95% recycled a ass 0% recycled	and							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	3.02E-03	3.30E-02	1.01E-02	8.58E-06	3.73E+01	1.68E-01	2.13E-07
Elia oi ille	Waste processing	С3	2.01E-03	2.21E-02	6.07E-03	2.25E-07	6.00E+00	1.39E-02	1.22E-07
	Disposal	C4	6.65E-03	6.88E-02	1.94E-02	7.80E-06	4.22E+01	2.01E+00	3.08E-07
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-8.44E-01	-8.82E+00	-2.55E+00	-6.82E-04	-7.12E+03	-9.36E+01	-6.52E-05

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment;
EP-terrestrial = Eutrophication potential, accumulated exceedance;
POCP = Formation potential of tropospheric ozone:

POCP = Formation potential of tropospheric ozone; ADP-mineral&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

Paramet	ers describin	ıg en	vironmental im	pacts			
			IRP	ETP-fw	HTP-c	HTP-nc	SQP
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless
	Raw material supply	A1	1.06E+02	7.34E+04	3.85E-06	5.79E-05	5.99E+03
Product	Transport	A2	4.38E-01	6.75E+01	3.89E-09	7.61E-08	5.04E+01
stage	Manufacturing	А3	6.22E+01	1.44E+03	3.66E-08	7.81E-07	7.21E+02
	Total (Consumption grid)	A1- 3	1.69E+02	7.49E+04	3.89E-06	5.88E-05	6.76E+03
	netals 95% recycle ted glass 0% recyc						
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	1.92E-01	2.91E+01	9.43E-10	3.05E-08	2.56E+01
End of file	Waste processing	C3	2.70E-02	3.51E+00	1.36E-10	2.55E-09	7.64E-01
	Disposal	C4	2.12E-01	4.34E+03	4.11E-09	4.95E-08	9.11E+01
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-9.39E+00	-2.03E+04	-8.46E-07	-1.74E-05	-1.47E+03

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

Paramete	rs describing	resc	ource use, p	orimary ene	ergy			
			PERE	PERM	PERT	PENRE	PENRM	PENRT
				MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	2.72E+03	0.00E+00	2.72E+03	2.47E+04	1.86E+02	2.49E+04
December	Transport	A2	1.42E+00	0.00E+00	1.42E+00	7.87E+01	0.00E+00	7.87E+01
Product stage	Manufacturing	А3	4.36E+02	9.93E+00	4.46E+02	3.43E+03	5.03E+01	3.48E+03
	Total (Consumption grid) A1		3.16E+03	9.93E+00	3.17E+03	2.82E+04	2.36E+02	2.85E+04
	etals 95% recycled a ass 0% recycled	and						
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
E 1 6116	Transport	C2	5.26E-01	0.00E+00	5.26E-01	3.66E+01	0.00E+00	3.66E+01
End of life	Waste processing	СЗ	3.36E-02	0.00E+00	3.36E-02	5.88E+00	0.00E+00	5.88E+00
	Disposal	C4	8.56E-01	0.00E+00	8.56E-01	3.89E+01	0.00E+00	3.89E+01
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-4.33E+02	0.00E+00	-4.33E+02	-7.07E+03	0.00E+00	-7.07E+03

as raw materials;

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m ³				
Product stage	Raw material supply	A1	1.53E+01	0.00E+00	0.00E+00	1.79E+01				
	Transport	A2	0.00E+00	0.00E+00	0.00E+00	1.05E-02				
	Manufacturing	A3	2.40E-01	1.61E-03	0.00E+00	6.39E-01				
	Total (Consumption grid)	A1-3	1.55E+01	1.61E-03	0.00E+00	1.85E+01				
Scenario: metals 9 glass 0% recycled	5% recycled and la	aminated								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	4.16E-03				
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	3.42E-04				
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	4.74E-02				
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-2.52E+00				

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories										
			HWD	NHWD	RWD					
			kg	kg	kg					
	Raw material supply	A1	4.88E+02	3.40E+03	5.04E-02					
	Transport	A2	1.11E-01	2.09E+00	1.43E+02					
Product stage	Manufacturing	A3	2.87E+00	5.21E+01	1.85E-02					
	Total (Consumption grid)	A1-3	4.91E+02	3.45E+03	1.43E+02					
Scenario: metals 98 glass 0% recycled	5% recycled and la	minated								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00					
End of life	Transport	C2	4.11E-02	7.31E-01	2.52E-04					
End of life	Waste processing	C3	7.90E-03	5.53E-02	4.14E-05					
	Disposal	C4	1.74E-01	1.53E+02	2.29E-04					
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.56E+02	-9.84E+02	-8.16E-03					

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other envi	ronmental info	rmatio	n describino CRU	output flo	ws – at end MER	of life EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Product	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
stage	Manufacturing	A3	0.00E+00	2.74E-02	1.40E-05	1.33E+00	0.00E+00	0.00E+00
	Total (Consumption grid)	A1-3	0.00E+00	2.74E-02	1.40E-05	1.33E+00	0.00E+00	0.00E+00
	tals 95% recycled ass 0% recycled	and						
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
En al relier	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Waste processing	С3	0.00E+00	7.60E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

LCA Results - 1 unit T55Telescopic 55 mm (295 kg)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Paramete	ers describing	envir	onmental	impacts					
			GWP-total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwater
			kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq
	Raw material supply	A1	2.37E+03	2.36E+03	-2.19E+00	5.96E+00	1.10E-04	1.59E+01	7.72E-01
Product	Transport	A2	5.28E+00	5.27E+00	6.62E-03	2.43E-03	1.19E-06	2.37E-02	4.65E-04
stage	Manufacturing	A3	1.27E+02	1.25E+02	2.14E+00	7.73E-02	1.05E-05	2.06E-01	1.24E-02
	Total (Consumption grid)	A1-3	2.50E+03	2.49E+03	-4.34E-02	6.04E+00	1.22E-04	1.61E+01	7.85E-01
	etals 95% recycled ass 0% recycled	and							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End a site.	Transport	C2	2.46E+00	2.45E+00	2.09E-03	9.63E-04	5.68E-07	9.96E-03	1.58E-04
End of life	Waste processing	C3	4.38E-01	4.37E-01	1.54E-04	4.37E-05	9.35E-08	4.55E-03	1.36E-05
	Disposal	C4	1.57E+01	1.57E+01	1.63E-02	2.16E-03	6.02E-07	1.86E-02	6.14E-04
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-7.45E+02	-7.46E+02	2.19E+00	-9.87E-01	-2.21E-05	-4.76E+00	-2.23E-01

GWP-total = Global warming potential, total; GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

			EP- marine	EP- terrestrial	POCP	ADP- mineral&m etals	ADP-fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence
	Raw material supply	A1	2.63E+00	2.73E+01	7.81E+00	1.40E-02	2.40E+04	6.77E+02	1.90E-04
Product	Transport	A2	7.14E-03	7.82E-02	2.45E-02	3.56E-05	7.93E+01	4.20E-01	4.88E-07
stage	Manufacturing	А3	9.19E-02	6.90E-01	1.87E-01	4.66E-04	2.82E+03	1.34E+01	1.62E-06
	Total (Consumption grid)	A1 - 3	2.73E+00	2.81E+01	8.02E+00	1.45E-02	2.69E+04	6.91E+02	1.92E-04
Scenario: metals 95% recycled and laminated glass 0% recycled		and							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	3.00E-03	3.28E-02	1.00E-02	8.53E-06	3.71E+01	1.67E-01	2.12E-07
End of life	Waste processing	СЗ	2.01E-03	2.21E-02	6.07E-03	2.25E-07	6.00E+00	1.39E-02	1.22E-07
	Disposal	C4	6.82E-03	7.06E-02	1.99E-02	7.98E-06	4.35E+01	2.07E+00	3.17E-07
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-7.96E-01	-8.32E+00	-2.40E+00	-6.43E-04	-6.71E+03	-8.82E+01	-6.14E-05

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment;

EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone; ADP-mineral&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

Parameters describing environmental impacts									
			IRP	ETP-fw	HTP-c	HTP-nc	SQP		
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless		
	Raw material supply	A1	1.03E+02	7.09E+04	3.71E-06	5.51E-05	5.79E+03		
	Transport	A2	4.34E-01	6.69E+01	3.88E-09	7.55E-08	4.98E+01		
Product stage	Manufacturing	A3	6.18E+01	1.44E+03	3.64E-08	7.78E-07	7.17E+02		
	Total (Consumption grid)	A1- 3	1.65E+02	7.24E+04	3.75E-06	5.60E-05	6.56E+03		
Scenario: metals 95° laminated glass 0%	•								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
End of life	Transport	C2	1.91E-01	2.90E+01	9.38E-10	3.04E-08	2.55E+01		
End of file	Waste processing	С3	2.70E-02	3.51E+00	1.36E-10	2.55E-09	7.64E-01		
	Disposal	C4	2.18E-01	4.15E+03	4.14E-09	4.99E-08	9.45E+01		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-8.85E+00	-1.92E+04	-8.00E-07	-1.64E-05	-1.39E+03		

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

Parameters describing resource use, primary energy									
				PERM	PERT	PENRE	PENRM	PENRT	
			MJ	MJ	MJ	MJ	MJ	MJ	
	Raw material supply	A1	2.60E+03	0.00E+00	2.60E+03	2.37E+04	1.86E+02	2.39E+04	
	Transport	A2	1.41E+00	0.00E+00	1.41E+00	7.79E+01	0.00E+00	7.79E+01	
Product stage	Manufacturi ng	А3	4.33E+02	9.93E+00	4.43E+02	3.41E+03	5.03E+01	3.46E+03	
	Total (Consumpti on grid)	A1-3	3.03E+03	9.93E+00	3.04E+03	2.72E+04	2.36E+02	2.74E+04	
Scenario: metal		and							
	Deconstruct ion, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
End of life	Transport	C2	5.23E-01	0.00E+00	5.23E-01	3.64E+01	0.00E+00	3.64E+01	
	Waste processing	С3	3.36E-02	0.00E+00	3.36E-02	5.88E+00	0.00E+00	5.88E+00	
	Disposal	C4	8.71E-01	0.00E+00	8.71E-01	4.02E+01	0.00E+00	4.02E+01	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-4.08E+02	0.00E+00	-4.08E+02	-6.66E+03	0.00E+00	-6.66E+03	

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water									
			SM	RSF	NRSF	FW			
			kg	MJ net calorific value	MJ net calorific value	m ³			
	Raw material supply	A1	1.47E+01	0.00E+00	0.00E+00	1.72E+01			
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	1.04E-02			
	Manufacturing	А3	2.38E-01	1.60E-03	0.00E+00	6.16E-01			
	Total (Consumption grid)	A1-3	1.49E+01	1.60E-03	0.00E+00	1.78E+01			
Scenario: metals 99 laminated glass 0%									
	Deconstruction , demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	4.13E-03			
LIIU UI IIIE	Waste processing	С3	0.00E+00	0.00E+00	0.00E+00	3.42E-04			
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	4.89E-02			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-2.37E+00			

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	4.65E+02	3.25E+03	4.89E-02
	Transport	A2	1.10E-01	2.08E+00	1.43E+02
Product stage	Manufacturing	A3	2.85E+00	5.19E+01	1.84E-02
	Total (Consumption grid)	A1-3	4.68E+02	3.30E+03	1.43E+02
Scenario: metals glass 0% recycled	95% recycled and la	minated			
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	4.09E-02	7.26E-01	2.51E-04
End of life	Waste processing	C3	7.90E-03	5.53E-02	4.14E-05
	Disposal	C4	1.72E-01	1.59E+02	2.37E-04
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.47E+02	-9.28E+02	-7.70E-03

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other enviror	nmental informa	ition de	scribing o	utput flows	– at end o	f life		
			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Product stage	Manufacturing	A3	0.00E+00	2.72E-02	1.39E-05	1.33E+00	0.00E+00	0.00E+00
	Total (Consumption grid)	A1-3	0.00E+00	2.72E-02	1.39E-05	1.33E+00	0.00E+00	0.00E+00
Scenario: metals laminated glass	95% recycled and 0% recycled							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of file	Waste processing	C3	0.00E+00	7.60E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

CRU = Components for reuse; MFR = Materials for recycling

MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenario	Parameter		Units	Results			
C1 to C4 End of life,						<u> </u>	'
C1 - Deconstruction	All components a amount of energ this assumption	y and assur	N/A	0			
C2 - Transport from site to pre-processing acility or landfill	All elements of the recycled through processing plant	he system on commonly	km	50			
C3 - Pre-processing of uninstalled product (if relevant)	Recycling quanti T100 telescopic 100 mm T55 telescopic mm	ities in kg Alun c 132	ninium	Steel 7.6 7.6	e, metals	%	95
C4 – Disposal	According to BR metals are landfi Laminated glass assumed that it value Recycling quanti T100 telescopic 100 mm T55 telescopic	illed is typically was 100% s	hard to recent to land	cycled, so		%	100
Module D	Metals are widel BRE's PCR T100 telescopic 100 mm T55 telescopic mm	Alun 34.8 55 32.8 that the prir	t can be assumed that 95% will inium Steel 4.1 4.1 arry content of aluminium was				

Interpretation of results

Figures 1 below show the results in kgCO₂eq per stage for 1 unit T100 Telescopic 100 mm (297 kg). It shows that 95% of the impact of this product is associated with the impact of the raw materials.

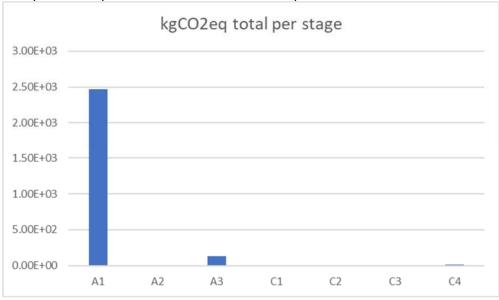


Figure 1: kgCO₂eq per stage for 1 unit T100 Telescopic 100 mm

Further analysis of stage A1 shows that 86% of the $kgCO_2eq$ of 1 unit T100 Telescopic 100 mm are associated with the aluminium and 10% is associated with the glass – see figure 2:

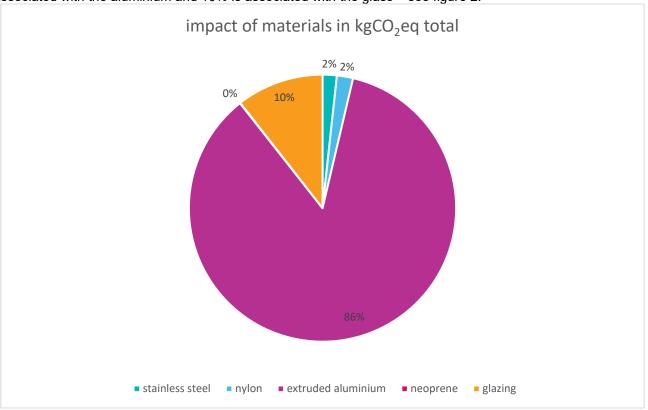


Figure 2: kgCO₂eq per raw materials in A1 for 1 unit T100 Telescopic 100 mm

Figures 3 below show the results in $kgCO_2eq$ per stage for 1 unit T55 Telescopic 55 mm (295 kg). It shows that 95% of the impact of this product is associated with the impact of the raw materials.

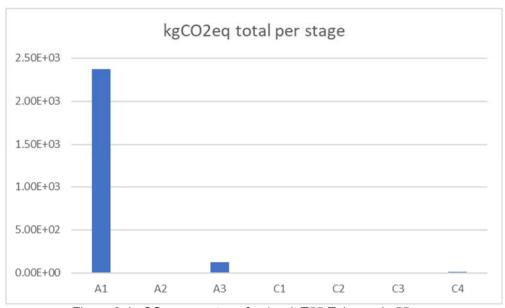


Figure 3: kgCO₂eq per stage for 1 unit T55 Telescopic 55 mm

Further analysis of stage A1 shows that 86% of the kgCO₂eq of 1 unit T55 Telescopic 55 mm are associated with the aluminium and 10% is associated with the glass – see figure 4:

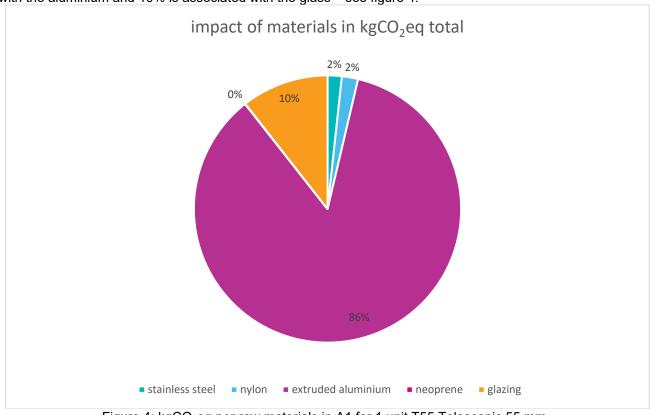


Figure 4: kgCO₂eq per raw materials in A1 for 1 unit T55 Telescopic 55 mm

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

BSI Building hardware. Hardware for sliding doors and folding doors. Requirements and test methods BS EN 1527:2019 - TC