hre

Statement of Verification

BREG EN EPD No.: 000624

Issue 01

BRE/Global

FPD

611

This is to verify that the

Environmental Product Declaration

provided by:

Zentia Profiles Limited

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and **BRE Global Scheme Document SD207**

This declaration is for: 1 Linear Metre of Rolled Steel Suspended Grid System (Unpainted)

Company Address

Zentia Profiles Limited, 401 Princesway Central, Team Valley, Gateshead NE11 OTU United Kingdom

Signed for BRE Global Ltd

Emma Baker

Operator

17 September 2024 Date of First Issue

17 September 2024 Date of this Issue

16 September 2029 Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms. To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enguiries@breglobal.com

Page 1 of 31

Environmental Product Declaration

EPD Number: 000624

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE 2023 Product Category Rules (PN 514 Rev 3.1) for Type III environmental product declaration of construction products to EN 15804:2012+A2:2019							
Commissioner of LCA study	LCA consultant/Tool							
Zentia Profiles Limited, 401 Princesway Central, Team Valley, Gateshead NE11 0TU United Kingdom	LCA tool: BRE LINA A2 LCA Consultant: Tom Proctor							
Declared/Functional Unit	Applicability/Coverage							
1 linear metre of rolled steel suspended grid system (unpainted)	Other (please specify). Product specific							
ЕРД Туре	Background database							
Cradle to Gate with C and D and Options	ecoinvent v3.8							
Demonstra	tion of Verification							
CEN standard EN 15	5804 serves as the core PCR ^a							
Independent verification of the declara □Internal	ation and data according to EN ISO 14025:2010 ⊠ External							
(Where approp Bala	riate ^ь)Third party verifier: Subramanian							
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)							
Co	mparability							
EN 15804:2012+A2:2019. Comparability is further depe	Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019 for further guidance							

EPD Number: 000624 BF1805-C-ECOP Rev 0.2 Date of Issue:17 September 2024 Page 2 of 31

Information modules covered

	Product			ruction	Use stage Related to the building fabric Related to the building				End-of-life			Benefits and loads beyond the system boundary				
A1	A2	A3	A4	A5	B1	B2	B 3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
\checkmark	V	V	V	V								Ŋ	V	V	V	\checkmark

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Zentia mineral suspended ceiling grid is manufactured at the following factory:

401 Princesway Central Team Valley Gateshead NE11 0TU United Kingdom

Construction Product:

Product Description

Zentia's suspended ceiling grid system is produced in the traditional roll forming and press stamping method. This product is used in conjunction with Zentia suspended ceiling membranes. The product is made up of Galvanised Steel Ribbon with Metal Clips.

This EPD applies to the following products: Class A1 Substructure components - type 1, Gridline 15 Butt Cut & Joggled, Perimeter 19 trim, Gridline 24 (including Corrosive Resistant, Max, System Z / Corridor, Butt Cut & Joggled, Seismic), main runners, cross tees, perimeter trims, and accessories. The LCA analyses have been conducted for one linear metre of rolled steel suspended grid system by using the average weight, i.e. 0.2956 kg/m for Gridline 15, 0.1977kg/m for Perimeter 19 trim and 0.2663 kg/m for Gridline 24.

The grid system supports the Zentia suspended ceiling membranes, which are typically 600x600mm in size, with different shapes and sizes also available. The end user can use the results in the EPD to calculate the impacts for bespoke grid system used in the construction sector. For example, a typical 100m2 installation of 600x600mm suspended ceiling tiles requires:

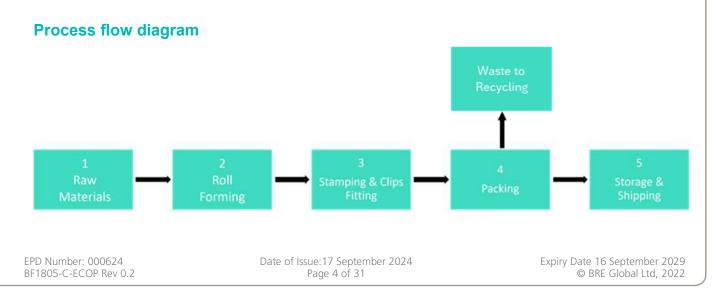
- 70m of perimeter trim at 0.7 m/m2
- 84m of main runner to go through the length of the room and support the cross tees.
- 251m of cross tees to run parallel to the main runners and support the membrane.

The suspended ceiling membranes that this grid system is used to support is not included in this EPD. Additional components that enable the suspension of the ceiling system are also not included, which are the hold down clips, hangers, and top fixings.

EPD Number: 000624	Date of Issue:17 September 2024	Expin
BF1805-C-ECOP Rev 0.2	Page 3 of 31	

Product Table – Technical Information

Product Name	Width (mm)	Fire Reaction (EN 13501-1)
24mm Gridline	24	A1
15mm Gridline	15	A1
19 mm Perimeter trim	19	A1


Main Product Contents

Material Input	%
Galvanised Steel Ribbon	99.4
Metal Clips	0.6

Note: The above product content is same for all the products covered in this EPD.

Manufacturing Process

The suspended ceiling grid system is produced in the traditional roll forming and press stamping method. Steel is delivered to the site and pulled from a coil of ribbon through a series of consecutive rolls that incrementally bends the steel into its desired shape. The material then has holes pressed into it and it is cut to the specific size of the desired product. Clips are then attached at the ends, to allow the grid to be attached to other sections of the grid system. Depending on the desired appearance, the capping colour can be changed.

Construction Installation

Transport to site (A4) is calculated on the assumption that Zentia sells ceiling grid to distributors, 90% of which are in the UK. The remaining distributors are within Europe. It is assumed that the grid is used in large commercial buildings which tend to be located within large cities. The furthest of which from the factory is London, hence the EPD assumes this distance for A4 – 450 km.

Construction installation (A5) has a wastage rate of 5%. No further materials or energy are associated with the construction of the product. There are no known increased hazards over and above those typically found on a building site. Personal protective equipment should be worn.

Use Information

There is no energy use associated with the product once installed.

End of Life

The service life of Zentia's suspended ceiling grid is up to 30 years if manufacturer's recommendations on installation and use are followed. At the end of use and where ceiling grid are removed without damage, they can be re-installed in other contexts. According to the BRE PCR3.1, 95% of the steel products will be recycled and 5% will be considered as a natural loss during the waste processing and will be ended up in Landfilling.

Life Cycle Assessment Calculation Rules

Declared unit description

1 linear metre of rolled steel suspended grid system (unpainted)

System boundary

This cradle-to-gate with C and D and options EPD has been assessed in accordance with the modular approach as defined in EN15804:2012+A2:2019 and BRE 2023 Product Category Rules (PN 514 Rev 3.1) and includes the processes covered in the manufacturing site and product stage A1 to A3, A4, A5, C1-C4 and D.

Data sources, quality and allocation

Specific primary data derived from Zentia's production process at the Princesway Team Valley, Gateshead factory, has been modelled using the LINA LCA software A2 and the ecoinvent 3.8 database. In accordance with the requirements of EN 15804:2012+A2:2019, the most current available data has been used.

In the manufacturing unit, Zentia Grid systems are the only product manufactured, available in 15mm, 19mm, and 24mm thicknesses. The LCA analysis is conducted for the individual products, i.e., Gridline 15 Butt Cut & Joggled, Perimeter 19mm trim, Gridline 24mm including 24 Corrosive Resistant, 24 Max, 24 System Z / Corridor, 24 Butt Cut & Joggled and Seismic, and all the results are enclosed in the EPD.

Once the product is manufactured in the Zentia manufacturing unit, it will be powder-coated and sent to the construction site for installation. However, the manufacturer has confirmed that during the data collection period, the paint line was not installed in the manufacturing unit. Therefore, the LCA analysis has been conducted for the unpainted grid systems, using the manufacturer-specific production data covering a period of one year (01/01/2021 - 31/12/2021).

Secondary data has been obtained for all other upstream and downstream processes that are beyond the control of the manufacturer (i.e., raw material production) from the ecoinvent 3.8 database. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs, according to the requirements specified in EN 15804:2012+A2:2019.

Zentia's steel grid is the only product manufactured at the Princesway factory. Site-wide values for energy, water, and waste have been taken from bills. Figures for the raw materials, ancillary materials, and packaging were from actual usages. Allocation of energy, water, and waste has been done by mass according to the provisions of the BRE 2023 PCR PN 514 Rev 3.1 and EN 15804:2012+A2:2019.

Quality Level	Geographical representativeness	Technical representativeness	Time representativeness
Very Good	Data from area under study.	Data from processes and products under study. Same state of technology applied as defined in goal and scope (i.e. identical technology).	There is less than 5 years between the ecoinvent LCI reference year, and the time period for which the LCA was undertaken.

Specific UK datasets have been selected from the ecoinvent LCI for this LCA. The quality level of geographical and technical representativeness is therefore Very Good. The quality level of time representativeness is Very Good as the background LCI datasets are based on ecoinvent v3.8 which was compiled in 2021. Therefore, there is less than 1 years between the ecoinvent LCI reference year and the time period for which the LCA was undertaken.

The emission factors, CO₂ emissions for every 1 kWh of energy used, was 0.312 kgCO2eq/kWh for GB national grid electricity and 0.232 kgCO2eq/kWh for GB natural gas, at industrial furnace.

Zentia grid are made up of 99% steel and 1% metal clips. Therefore, in the end-of-life calculations, 95% of Zentia's steel grid is recycled, and 5% is considered as steel loss during waste processing, as referenced in the BRE PCR 3.1.

Cut-off criteria

All stages of the manufacturing process have been included. All inputs or outputs have been included and all raw materials, packaging and transport, energy, water use and wastes, are included, except for direct emissions to air, water and soil, which are not measured. Upstream extraction and/or processing of inputs are included within the use of the background datasets within LINA.

LCA Results

Summ	Summary of Main Indicators (A1-A3)											
Product	Global warming (GWP-total)	Non-renewable consumption (ADPF)	Primary energy usage (PERT+PENRT)	Waste Production (HWD+NHWD+RWD)	Water Consumption (FW)							
Unit	kg CO2 eq	MJ	MJ	Kg	m3							
24 mm	6.96E-01	8.16E+00	9.18E+00	1.47E+00	8.47E-03							
15 mm	7.72E-01	9.05E+00	1.02E+01	1.63E+00	9.40E-03							
19 mm	5.07E-01	5.97E+00	6.72E+00	1.08E+00	6.21E-03							

hre

LCA Results - Gridline 24 (including Corrosive Resistant, Max, System Z / Corridor, Butt Cut & Joggled, Seismic) with the density of 0.2663 kg/m

Parameters describing environmental impacts

GWP- GWP- GWP- ODP AP EP-										
		total	fossil	biogenic	luluc			freshwat er		
	kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CO₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO₄)³- eq			
	Raw material supply	A1	6.78E-01	6.75E-01	2.64E-03	6.61E-04	3.81E-08	8.79E-03	3.26E-04	
Product stage	Transport	A2	1.80E-02	1.80E-02	1.53E-05	7.10E-06	4.17E-09	7.52E-05	1.16E-06	
Floduci stage	Manufacturing	A3	-6.14E-04	1.94E-02	-2.04E-02	1.03E-04	2.15E-09	7.79E-05	5.69E-06	
	Total (of product stage)	A1-3	6.96E-01	7.12E-01	-1.78E-02	7.71E-04	4.44E-08	8.94E-03	3.33E-04	
Construction	Transport	A4	1.99E-02	1.99E-02	1.70E-05	7.82E-06	4.61E-09	8.08E-05	1.28E-06	
process stage	Construction	A5	6.00E-02	3.61E-02	2.39E-02	3.87E-05	2.31E-09	4.49E-04	1.67E-05	
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
End of life	Transport	C2	2.22E-03	2.21E-03	1.89E-06	8.69E-07	5.12E-10	8.98E-06	1.43E-07	
	Waste processing	C3	1.46E-02	1.46E-02	5.14E-06	1.45E-06	3.11E-09	1.51E-04	4.51E-07	
	Disposal	C4	7.03E-05	7.01E-05	6.95E-08	6.62E-08	2.84E-11	6.59E-07	6.42E-09	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.65E-01	-2.66E-01	8.33E-04	-7.53E-05	-1.06E-08	-9.64E-04	-1.05E-04	

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

24 mm LCA Results (continued)

Parameters describing environmental impacts

r arameters describing environmental impacts										
		EP- marine	EP- terrestrial	POCP	ADP- mineral& metals	ADP- fossil	WDP	РМ		
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence	
	Raw material supply	A1	9.10E-04	3.22E-02	3.01E-03	2.52E-05	7.50E+00	3.33E-01	1.08E-07	
Product stage	Transport	A2	2.25E-05	2.46E-04	7.51E-05	6.25E-08	2.72E-01	1.22E-03	1.55E-09	
Flouder stage	Manufacturing	A3	3.56E-05	2.28E-04	7.34E-05	9.04E-08	3.86E-01	9.37E-03	1.27E-09	
	Total (of product stage)	A1-3	9.68E-04	3.27E-02	3.16E-03	2.54E-05	8.16E+00	3.44E-01	1.11E-07	
Construction	Transport	A4	2.43E-05	2.66E-04	8.15E-05	6.92E-08	3.01E-01	1.35E-03	1.72E-09	
process stage	Construction	A5	4.93E-05	1.65E-03	1.61E-04	1.27E-06	4.14E-01	1.72E-02	5.60E-09	
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Final of life	Transport	C2	2.71E-06	2.96E-05	9.05E-06	7.69E-09	3.35E-02	1.51E-04	1.91E-10	
End of life	Waste processing	C3	6.70E-05	7.34E-04	2.02E-04	7.49E-09	2.00E-01	4.62E-04	4.05E-09	
	Disposal	C4	2.29E-07	2.51E-06	7.30E-07	1.60E-10	1.96E-03	8.98E-05	1.33E-11	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.29E-04	-2.43E-03	-1.34E-03	-2.00E-07	-2.69E+00	-1.91E-02	-1.78E-08	

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, accumulated

exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

Parameters describing environmental impacts

			IRP	ETP-fw	HTP-c	HTP-nc	SQP			
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless			
Product stage	Raw material supply	A1	3.92E-02	2.68E+01	4.81E-09	2.61E-08	2.41E+00			
	Transport	A2	1.40E-03	2.12E-01	6.90E-12	2.22E-10	1.86E-01			
	Manufacturing	A3	5.46E-03	3.36E-01	3.48E-11	2.31E-10	2.28E+00			
	Total (of product stage)	A1-3	4.61E-02	2.74E+01	4.85E-09	2.66E-08	4.87E+00			
Construction	Transport	A4	1.55E-03	2.35E-01	7.61E-12	2.46E-10	2.07E-01			
process stage	Construction	A5	2.33E-03	1.37E+00	2.43E-10	1.33E-09	2.47E-01			
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
End of life	Transport	C2	1.72E-04	2.61E-02	8.46E-13	2.74E-11	2.30E-02			
End of life	Waste processing	C3	9.00E-04	1.17E-01	4.52E-12	8.47E-11	2.54E-02			
	Disposal	C4	8.70E-06	1.24E-03	3.14E-14	8.13E-13	4.11E-03			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-4.76E-03	-7.96E+00	-1.42E-09	-5.47E-09	-5.25E-01			

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

Parameters describing resource use, primary energy

			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	6.63E-01	0.00E+00	6.63E-01	7.41E+00	0.00E+00	7.41E+00
Broduct stage	Transport	A2	3.83E-03	0.00E+00	3.83E-03	2.67E-01	0.00E+00	2.67E-01
Product stage	Manufacturing	A3	1.28E-01	3.18E-01	4.47E-01	3.29E-01	5.79E-02	3.87E-01
	Total (of product stage)	A1-3	7.95E-01	3.18E-01	1.11E+00	8.01E+00	5.79E-02	8.07E+00
Construction	Transport	A4	4.24E-03	0.00E+00	4.24E-03	2.96E-01	0.00E+00	2.96E-01
process stage	Construction	A5	-2.13E-01	2.68E-01	5.59E-02	3.91E-01	1.80E-02	4.09E-01
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	4.71E-04	0.00E+00	4.71E-04	3.28E-02	0.00E+00	3.28E-02
End of life	Waste processing	C3	1.12E-03	0.00E+00	1.12E-03	1.96E-01	0.00E+00	1.96E-01
	Disposal	C4	1.67E-05	0.00E+00	1.67E-05	1.92E-03	0.00E+00	1.92E-03
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-9.31E-02	0.00E+00	-9.31E-02	-2.64E+00	0.00E+00	-2.64E+00

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water

			SM	RSF	NRSF	FW
				MJ net calorific value	MJ net calorific value	m ³
	Raw material supply	A1	1.02E-01	0.00E+00	0.00E+00	8.21E-03
Droduct store	Transport	A2	0.00E+00	0.00E+00	0.00E+00	3.03E-05
Product stage	Manufacturing	A3	6.38E-03	3.10E-09	0.00E+00	2.25E-04
	Total (of product stage)	A1-3	1.08E-01	3.10E-09	0.00E+00	8.47E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	3.36E-05
process stage	Construction	A5	5.41E-03	1.55E-10	0.00E+00	4.25E-04
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
En el estits	Transport	C2	0.00E+00	0.00E+00	0.00E+00	3.73E-06
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	1.14E-05
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	2.10E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-4.63E-04

SM = Use of secondary material;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

RSF = Use of renewable secondary fuels;

Other environmental information describing waste categories

			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	2.38E-01	1.20E+00	1.71E-05
Droduct stage	Transport	A2	3.00E-04	5.32E-03	1.84E-06
Product stage	Manufacturing	A3	9.31E-04	2.49E-02	1.85E-06
	Total (of product stage)	A1-3	2.39E-01	1.23E+00	2.08E-05
Construction	Transport	A4	3.32E-04	5.90E-03	2.04E-06
process stage	Construction	A5	1.20E-02	6.19E-02	1.08E-06
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	3.69E-05	6.55E-04	2.26E-07
End of life	Waste processing	C3	2.63E-04	1.84E-03	1.38E-06
	Disposal	C4	2.04E-06	2.88E-05	1.28E-08
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.22E-02	-4.88E-01	-4.64E-06

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

			CRU	MFR	MER	EEE	EET	Biogenic carbon (product)	Biogenic carbon (packaging)
		kg	kg	kg	MJ per energy carrier	MJ per energy carrier	kg C	kg C	
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Floudel stage	Manufacturing	A3	0.00E+00	1.44E-08	1.88E-10	9.25E-07	5.19E-06	-1.12E-04	-2.56E-03
Total (of product stage)		A1-3	0.00E+00	1.44E-08	1.88E-10	9.25E-07	5.19E-06	-1.12E-04	-2.56E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
process stage	Construction	A5	0.00E+00	1.19E-02	2.07E-10	4.62E-08	2.59E-07	1.19E-04	2.41E-03
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Waste processing	C3	0.00E+00	2.53E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Disposal C4		C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EEE = Exported Electrical Energy EET = Exported Thermal Energy

LCA Results – Gridline 15 Butt Cut & Joggled with the weight of 0.2956 kg/m

Parameters describing environmental impacts

			GWP- total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwat er
			kg CO₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CO₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq
	Raw material supply	A1	7.53E-01	7.49E-01	2.94E-03	7.34E-04	4.23E-08	9.76E-03	3.62E-04
Product stage	Transport	A2	2.00E-02	2.00E-02	1.70E-05	7.88E-06	4.63E-09	8.35E-05	1.29E-06
1 Toddel slage	Manufacturing	A3	-6.81E-04	2.15E-02	-2.27E-02	1.14E-04	2.38E-09	8.65E-05	6.32E-06
	Total (of product stage)		7.72E-01	7.91E-01	-1.97E-02	8.56E-04	4.93E-08	9.93E-03	3.70E-04
Construction	Transport	A4	2.21E-02	2.21E-02	1.88E-05	8.68E-06	5.12E-09	8.97E-05	1.42E-06
process stage	Construction	A5	6.66E-02	4.01E-02	2.65E-02	4.30E-05	2.56E-09	4.99E-04	1.85E-05
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Final of life	Transport	C2	2.46E-03	2.46E-03	2.09E-06	9.65E-07	5.69E-10	9.97E-06	1.58E-07
End of life	Waste processing	C3	1.62E-02	1.62E-02	5.71E-06	1.61E-06	3.45E-09	1.68E-04	5.01E-07
	Disposal	C4	7.80E-05	7.78E-05	7.71E-08	7.35E-08	3.15E-11	7.32E-07	7.13E-09
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.94E-01	-2.95E-01	9.25E-04	-8.36E-05	-1.18E-08	-1.07E-03	-1.17E-04

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic;

GWP-blogenic = Global warming potential, blogenic; GWP-luluc = Global warming potential, land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

15 mm LCA Results (continued)

Parameters describing environmental impacts

r arameters u					DOOD	4.0.0	400		514
			EP- marine	EP- terrestrial	POCP	ADP- mineral& metals	ADP- fossil	WDP	РМ
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence
	Raw material supply	A1	1.01E-03	3.58E-02	3.34E-03	2.80E-05	8.32E+00	3.70E-01	1.20E-07
Product stage	Transport	A2	2.50E-05	2.73E-04	8.33E-05	6.94E-08	3.02E-01	1.36E-03	1.72E-09
Froduct stage	Manufacturing	A3	3.95E-05	2.53E-04	8.15E-05	1.00E-07	4.29E-01	1.04E-02	1.41E-09
	Total (of product stage) A1-3		1.07E-03	3.63E-02	3.51E-03	2.82E-05	9.05E+00	3.81E-01	1.23E-07
Construction	Transport	A4	2.70E-05	2.95E-04	9.05E-05	7.69E-08	3.34E-01	1.50E-03	1.91E-09
process stage	Construction	A5	5.48E-05	1.83E-03	1.79E-04	1.41E-06	4.60E-01	1.91E-02	6.22E-09
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	3.00E-06	3.28E-05	1.01E-05	8.54E-09	3.71E-02	1.67E-04	2.12E-10
End of life	Waste processing	C3	7.44E-05	8.15E-04	2.24E-04	8.31E-09	2.22E-01	5.13E-04	4.50E-09
Disposal C4		2.54E-07	2.79E-06	8.11E-07	1.78E-10	2.17E-03	9.97E-05	1.47E-11	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.54E-04	-2.70E-03	-1.48E-03	-2.22E-07	-2.98E+00	-2.12E-02	-1.97E-08

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, accumulated

exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

Parameters describing environmental impacts

			IRP	ETP-fw	HTP-c	HTP-nc	SQP				
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless				
	Raw material supply	A1	4.35E-02	2.98E+01	5.34E-09	2.90E-08	2.68E+00				
Product stage	Transport	A2	1.55E-03	2.36E-01	7.66E-12	2.47E-10	2.07E-01				
i foddet stage	Manufacturing	A3	6.06E-03	3.73E-01	3.86E-11	2.57E-10	2.53E+00				
	Total (of product stage)	A1-3	5.11E-02	3.04E+01	5.39E-09	2.95E-08	5.41E+00				
Construction	Transport	A4	1.72E-03	2.61E-01	8.45E-12	2.74E-10	2.30E-01				
process stage	Construction	A5	2.59E-03	1.52E+00	2.70E-10	1.48E-09	2.74E-01				
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
End of life	Transport	C2	1.91E-04	2.90E-02	9.39E-13	3.04E-11	2.55E-02				
	Waste processing	C3	9.99E-04	1.30E-01	5.02E-12	9.41E-11	2.82E-02				
	Disposal	C4	9.65E-06	1.37E-03	3.48E-14	9.03E-13	4.56E-03				
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.28E-03	-8.83E+00	-1.58E-09	-6.07E-09	-5.83E-01				

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

Parameters describing resource use, primary energy

			PERE	PERM	PERT	PENRE	PENRM	PENRT
		MJ	MJ	MJ	MJ	MJ	MJ	
	Raw material supply	A1	7.36E-01	0.00E+00	7.36E-01	8.23E+00	0.00E+00	8.23E+00
Product stage	Transport	A2	4.25E-03	0.00E+00	4.25E-03	2.97E-01	0.00E+00	2.97E-01
FIDUUCI Stage	Manufacturing	A3	1.43E-01	3.53E-01	4.96E-01	3.65E-01	6.43E-02	4.30E-01
	Total (of product stage)	A1-3	8.82E-01	3.53E-01	1.24E+00	8.89E+00	6.43E-02	8.96E+00
Construction	Transport	A4	4.71E-03	0.00E+00	4.71E-03	3.28E-01	0.00E+00	3.28E-01
process stage	Construction	A5	-2.36E-01	2.98E-01	6.20E-02	4.35E-01	1.99E-02	4.55E-01
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	5.23E-04	0.00E+00	5.23E-04	3.65E-02	0.00E+00	3.65E-02
End of life	Waste processing	C3	1.24E-03	0.00E+00	1.24E-03	2.17E-01	0.00E+00	2.17E-01
	Disposal		1.85E-05	0.00E+00	1.85E-05	2.13E-03	0.00E+00	2.13E-03
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.03E-01	0.00E+00	-1.03E-01	-2.93E+00	0.00E+00	-2.93E+00

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water

			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m ³
	Raw material supply	A1	1.13E-01	0.00E+00	0.00E+00	9.12E-03
Droduct stops	Transport	A2	0.00E+00	0.00E+00	0.00E+00	3.36E-05
Product stage	Manufacturing	A3	7.08E-03	3.44E-09	0.00E+00	2.50E-04
Total (of product stage)		A1-3	1.20E-01	3.44E-09	0.00E+00	9.40E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	3.73E-05
process stage	Construction	A5	6.01E-03	1.72E-10	0.00E+00	4.71E-04
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	4.14E-06
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	1.26E-05
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	2.33E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-5.14E-04

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories

			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	2.64E-01	1.33E+00	1.90E-05
Product stage	Transport	A2	3.33E-04	5.91E-03	2.04E-06
Product stage	Manufacturing	A3	1.03E-03	2.76E-02	2.05E-06
	Total (of product stage)	A1-3	2.65E-01	1.36E+00	2.31E-05
Construction	Transport	A4	3.68E-04	6.54E-03	2.26E-06
process stage	Construction	A5	1.33E-02	6.87E-02	1.20E-06
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	4.09E-05	7.27E-04	2.51E-07
End of life	Waste processing	C3	2.92E-04	2.04E-03	1.53E-06
	Disposal	C4	2.26E-06	3.19E-05	1.42E-08
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.80E-02	-5.42E-01	-5.15E-06

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life

			CRU	MFR	MER	EEE	EET	Biogenic carbon (product)	Biogenic carbon (packaging)
		kg	kg	kg	MJ per energy carrier	MJ per energy carrier	kg C	kg C	
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FIDUUCI Slage	Manufacturing	A3	0.00E+00	1.60E-08	2.09E-10	1.03E-06	5.76E-06	-1.24E-04	-2.85E-03
	Total (of product stage)	A1-3	0.00E+00	1.60E-08	2.09E-10	1.03E-06	5.76E-06	-1.24E-04	-2.85E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
process stage	Construction	A5	0.00E+00	1.32E-02	2.29E-10	5.13E-08	2.88E-07	1.32E-04	2.67E-03
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Waste processing	C3	0.00E+00	2.81E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EEE = Exported Electrical Energy EET = Exported Thermal Energy

hre

LCA Results - Perimeter trim 19 mm with the weight of 0.1977 kg/m

Parameters describing environmental impacts

Parameters de									
			GWP- total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwat er
			kg CO₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CO₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq
	Raw material supply	A1	4.95E-01	4.92E-01	1.95E-03	4.67E-04	2.79E-08	6.47E-03	2.39E-04
Product stage	Transport	A2	1.33E-02	1.33E-02	1.13E-05	5.24E-06	3.07E-09	5.55E-05	8.55E-07
i foddol slage	Manufacturing	A3	-4.56E-04	1.44E-02	-1.52E-02	7.65E-05	1.60E-09	5.78E-05	4.23E-06
	Total (of product stage)		5.07E-01	5.20E-01	-1.32E-02	5.49E-04	3.26E-08	6.58E-03	2.44E-04
Construction	Transport	A4	1.48E-02	1.48E-02	1.26E-05	5.81E-06	3.42E-09	6.00E-05	9.52E-07
process stage	Construction	A5	4.41E-02	2.63E-02	1.77E-02	2.76E-05	1.69E-09	3.31E-04	1.22E-05
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	1.65E-03	1.64E-03	1.40E-06	6.45E-07	3.80E-10	6.67E-06	1.06E-07
End of life	Waste processing	C3	1.08E-02	1.08E-02	3.82E-06	1.08E-06	2.31E-09	1.12E-04	3.35E-07
	Disposal	C4	5.22E-05	5.21E-05	5.17E-08	4.92E-08	2.11E-11	4.90E-07	4.77E-09
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.97E-01	-1.97E-01	6.19E-04	-5.59E-05	-7.88E-09	-7.16E-04	-7.80E-05

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic;

GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

19 mm LCA Results (continued)

Parameters describing environmental impacts

			EP- marine	EP- terrestrial	POCP	ADP- mineral& metals	ADP- fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence
	Raw material supply	A1	6.66E-04	2.38E-02	2.20E-03	1.86E-05	5.48E+00	2.44E-01	7.97E-08
Product stage	Transport	A2	1.66E-05	1.82E-04	5.54E-05	4.61E-08	2.01E-01	9.03E-04	1.14E-09
Troduct stage	Manufacturing	A3	2.64E-05	1.69E-04	5.45E-05	6.71E-08	2.87E-01	6.96E-03	9.45E-10
	Total (of product A1-3 stage)		7.09E-04	2.42E-02	2.31E-03	1.87E-05	5.97E+00	2.52E-01	8.17E-08
Construction	Transport	A4	1.81E-05	1.98E-04	6.05E-05	5.14E-08	2.24E-01	1.01E-03	1.28E-09
process stage	Construction	A5	3.62E-05	1.22E-03	1.18E-04	9.38E-07	3.03E-01	1.26E-02	4.13E-09
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	2.01E-06	2.19E-05	6.72E-06	5.71E-09	2.48E-02	1.12E-04	1.42E-10
End of life	Waste processing	C3	4.98E-05	5.45E-04	1.50E-04	5.56E-09	1.48E-01	3.43E-04	3.01E-09
Disposal C4		1.70E-07	1.87E-06	5.43E-07	1.19E-10	1.46E-03	6.68E-05	9.87E-12	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.70E-04	-1.80E-03	-9.92E-04	-1.49E-07	-2.00E+00	-1.42E-02	-1.32E-08

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, accumulated

EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

Parameters describing environmental impacts

			IRP	ETP-fw	HTP-c	HTP-nc	SQP	
		kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless		
	Raw material supply	A1	2.88E-02	1.97E+01	3.56E-09	1.92E-08	1.77E+00	
Product stage	Transport	A2	1.03E-03	1.57E-01	5.09E-12	1.64E-10	1.38E-01	
Fibuuci stage	Manufacturing	A3	4.05E-03	2.49E-01	2.58E-11	1.72E-10	1.69E+00	
	Total (of product stage)	A1-3	3.39E-02	2.01E+01	3.59E-09	1.95E-08	3.60E+00	
Construction	Transport	A4	1.15E-03	1.74E-01	5.65E-12	1.83E-10	1.54E-01	
process stage	Construction	A5	1.72E-03	1.01E+00	1.80E-10	9.79E-10	1.82E-01	
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
End of life	Transport	C2	1.28E-04	1.94E-02	6.28E-13	2.03E-11	1.71E-02	
	Waste processing	C3	6.68E-04	8.68E-02	3.36E-12	6.29E-11	1.89E-02	
	Disposal	C4	6.47E-06	9.20E-04	2.33E-14	6.05E-13	3.06E-03	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-3.53E-03	-5.91E+00	-1.06E-09	-4.06E-09	-3.90E-01	

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

Parameters describing resource use, primary energy

			PERE	PERM	PERT	PENRE	PENRM	PENRT
		MJ	MJ	MJ	MJ	MJ	MJ	
	Raw material supply	A1	4.83E-01	0.00E+00	4.83E-01	5.42E+00	0.00E+00	5.42E+00
Broduct stops	Transport	A2	2.82E-03	0.00E+00	2.82E-03	1.97E-01	0.00E+00	1.97E-01
Product stage	Manufacturing	A3	9.53E-02	2.36E-01	3.32E-01	2.44E-01	4.30E-02	2.87E-01
	Total (of product stage)	A1-3	5.81E-01	2.36E-01	8.17E-01	5.86E+00	4.30E-02	5.90E+00
Construction	Transport	A4	3.15E-03	0.00E+00	3.15E-03	2.20E-01	0.00E+00	2.20E-01
process stage	Construction	A5	-1.58E-01	1.99E-01	4.10E-02	2.86E-01	1.33E-02	3.00E-01
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	3.50E-04	0.00E+00	3.50E-04	2.44E-02	0.00E+00	2.44E-02
End of life	Waste processing	C3	8.31E-04	0.00E+00	8.31E-04	1.45E-01	0.00E+00	1.45E-01
	Disposal	C4	1.24E-05	0.00E+00	1.24E-05	1.43E-03	0.00E+00	1.43E-03
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-6.91E-02	0.00E+00	-6.91E-02	-1.96E+00	0.00E+00	-1.96E+00

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water

			SM	RSF	NRSF	FW
		kg	MJ net calorific value	MJ net calorific value	m ³	
	Raw material supply	A1	7.52E-02	0.00E+00	0.00E+00	6.03E-03
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	2.24E-05
Froduct stage	Manufacturing	A3	4.74E-03	2.30E-09	0.00E+00	1.67E-04
	Total (of product stage)	A1-3	8.00E-02	2.30E-09	0.00E+00	6.22E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	2.49E-05
process stage	Construction	A5	4.00E-03	1.15E-10	0.00E+00	3.12E-04
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	2.77E-06
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	8.46E-06
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	1.56E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-3.44E-04

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories

			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	1.75E-01	8.77E-01	1.25E-05
Broduct stops	Transport	A2	2.22E-04	3.93E-03	1.36E-06
Product stage	Manufacturing	A3	6.91E-04	1.85E-02	1.37E-06
	Total (of product stage)	A1-3	1.76E-01	9.00E-01	1.53E-05
Construction	Transport	A4	2.46E-04	4.38E-03	1.51E-06
process stage	Construction	A5	8.81E-03	4.53E-02	7.93E-07
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	2.74E-05	4.86E-04	1.68E-07
End of life	Waste processing	C3	1.95E-04	1.37E-03	1.02E-06
	Disposal	C4	1.51E-06	2.14E-05	9.54E-09
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-3.88E-02	-3.62E-01	-3.45E-06

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life

			CRU	MFR	MER	EEE	EET	Biogenic carbon (product)	Biogenic carbon (packaging)
		kg	kg	kg	MJ per energy carrier	MJ per energy carrier	kg C	kg C	
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Floudel stage	Manufacturing	A3	0.00E+00	1.07E-08	1.40E-10	6.87E-07	3.85E-06	-8.29E-05	-1.90E-03
	Total (of product stage)	A1-3	0.00E+00	1.07E-08	1.40E-10	6.87E-07	3.85E-06	-8.29E-05	-1.90E-03
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
process stage	Construction	A5	0.00E+00	8.83E-03	1.53E-10	3.43E-08	1.93E-07	8.80E-05	1.79E-03
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Waste processing	C3	0.00E+00	1.88E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EEE = Exported Electrical Energy EET = Exported Thermal Energy

Scenarios and additional technical information

Scenario	Parameter	Units	Results
	The products are sold to distributors. 90% of those are base primarily used in education, commercial and healthcare buil larger cities, the furthest from the manufacturing plant is Lor scenario used for the EPD	dings. These tend t	o be based in
A4 – Transport to the building site	Fuel type / Vehicle type: 16-32 tonne lorry	Litre of fuel type per distance or vehicle type	Diesel 0.227L/km
	Distance:	km	450
	Capacity utilisation (incl. empty returns)	%	50
	Bulk density of transported products	kg/m	0.26
A5 – Installation	No further materials or energy are associated with the const known increased hazards over and above those typically for protective equipment should be worn.	truction of the produ und on a building sit	ct. There are e. Personal
	Product installation waste	%	5
Reference service life	Zentia's grid system have a reference service life of	years	30
	The service life of Zentia's suspended ceiling grid is		
C1 – Deconstruction	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in othe of steel and metal chips, it will be recycled to create new probe 100% recovery of the waste products, and they will be strecycling.	ne end of use and w her contexts. As the roducts. It is assume	product is ma ed that there
C1 – Deconstruction	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in othe of steel and metal chips, it will be recycled to create new probe 100% recovery of the waste products, and they will be steel and the steel and th	ne end of use and w ner contexts. As the roducts. It is assume sent to the waste pro	product is ma ed that there ocessing unit
	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in othe of steel and metal chips, it will be recycled to create new present be 100% recovery of the waste products, and they will be strecycling.	ne end of use and w ner contexts. As the roducts. It is assume sent to the waste pro	product is ma ed that there ocessing unit
C1 – Deconstruction	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in othe of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be s recycling. The grids are typically transported 50 km by lorry to a waste	ne end of use and w her contexts. As the roducts. It is assume the management plant	product is ma ed that there ocessing unit
	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in othe of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be s recycling. The grids are typically transported 50 km by lorry to a waste Road transport	he end of use and w her contexts. As the coducts. It is assume the waste pro- e management plant km	product is ma ed that there ocessing unit 50 16-32 tonne
	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in oth of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be s recycling. The grids are typically transported 50 km by lorry to a waste Road transport Type of transport	e end of use and w her contexts. As the roducts. It is assume emanagement plant km Road Litre of fuel type per distance coording to the BRE	product is ma ed that there ocessing unit 50 16-32 tonne lorry Diesel 0.227L/km PCR3.1, the
C2 – Transportation	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in oth of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be s recycling. The grids are typically transported 50 km by lorry to a waste Road transport Type of transport Fuel type The declared scenario assumes recycling of the product. Ac 95% of the steel products will be recycled and 5% will be co	e end of use and w her contexts. As the roducts. It is assume emanagement plant km Road Litre of fuel type per distance coording to the BRE	product is ma ed that there ocessing unit 50 16-32 tonne lorry Diesel 0.227L/km PCR3.1, the
	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in oth of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be st recycling. The grids are typically transported 50 km by lorry to a waste Road transport Type of transport Fuel type The declared scenario assumes recycling of the product. Ac 95% of the steel products will be recycled and 5% will be co the waste processing and will be ended up in Landfilling.	e end of use and w her contexts. As the roducts. It is assume emanagement plant km Road Litre of fuel type per distance cording to the BRE nsidered as a natur	product is ma ed that there becessing unit 50 16-32 tonne lorry Diesel 0.227L/km PCR3.1, the al loss during
C2 – Transportation	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in oth of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be st recycling. The grids are typically transported 50 km by lorry to a waste Road transport Type of transport Fuel type The declared scenario assumes recycling of the product. Ac 95% of the steel products will be recycled and 5% will be co the waste processing and will be ended up in Landfilling. 15mm Gridline – 95% recycling	e end of use and w her contexts. As the roducts. It is assume emanagement plant km Road Litre of fuel type per distance coording to the BRE nsidered as a natur	product is ma ed that there ocessing unit 50 16-32 tonne lorry Diesel 0.227L/km PCR3.1, the al loss during 0.2808
C2 – Transportation	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in oth of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be st recycling. The grids are typically transported 50 km by lorry to a waste Road transport Type of transport Fuel type The declared scenario assumes recycling of the product. Ac 95% of the steel products will be recycled and 5% will be co the waste processing and will be ended up in Landfilling. 15mm Gridline – 95% recycling	e end of use and w her contexts. As the roducts. It is assume the management plant km Road Litre of fuel type per distance coording to the BRE nsidered as a natur kg kg kg	product is ma ed that there ocessing unit 50 16-32 tonne lorry Diesel 0.227L/km PCR3.1, the al loss during 0.2808 0.1878
C2 – Transportation	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in oth of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be st recycling. The grids are typically transported 50 km by lorry to a waste Road transport Type of transport Fuel type The declared scenario assumes recycling of the product. Ac 95% of the steel products will be recycled and 5% will be co the waste processing and will be ended up in Landfilling. 15mm Gridline – 95% recycling 24mm Gridline – 95% recycling	e end of use and w her contexts. As the roducts. It is assume the management plant km Road Litre of fuel type per distance coording to the BRE nsidered as a natur kg kg kg	product is maded that there becessing unit 50 16-32 tonne lorry Diesel 0.227L/km PCR3.1, the al loss during 0.2808 0.1878
C2 – Transportation	recommendations on installation and use are followed. At the are removed without damage, they can be re-installed in oth of steel and metal chips, it will be recycled to create new pr be 100% recovery of the waste products, and they will be st recycling. The grids are typically transported 50 km by lorry to a waste Road transport Type of transport Fuel type The declared scenario assumes recycling of the product. Ac 95% of the steel products will be recycled and 5% will be co the waste processing and will be ended up in Landfilling. 15mm Gridline – 95% recycling 19mm Perimeter trim – 95% recycling 5 % of steel is lost during the recycling process, this is acco	e end of use and w her contexts. As the roducts. It is assume emanagement plant km Road Litre of fuel type per distance cording to the BRE nsidered as a natur kg kg kg unted for here.	product is maded that there becessing unit 50 16-32 tonne lorry Diesel 0.227L/km PCR3.1, the al loss during 0.2808 0.1878 0.2529

Scenarios and additional technical information									
Scenario	Parameter Units Results								
D – Benefits and loads beyond the system	In calculating the benefits of recycling of the product at the end of life, the pre-existing recycled content has been removed and the benefits have been calculated for virgin steel.								
	Benefits of recycling 15mm Gridline	kg	0.1747						
	Benefits of recycling 19mm Perimeter trim	kg	0.1168						
	Benefits of recycling 24mm Gridline	kg	0.1573						

Interpretation

The bulk of the environmental impacts and primary energy demand are attributed to the manufacturing phase, covered by information modules A1-A3 of EN15804:2012+A2:2019. Steel accounts for 99.4% of the total input material mass and contributes the most on overall environmental impacts.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

BSI. Suspended Ceilings, Requirements and Test Methods. BS EN 13964:2014. London, BSI, 2014.

BSI. Fire classification of construction products and building elements - Classification using data from reaction to fire tests. BS EN 13501-1:2018. London, BSI, 2018

BSI. Construction products: Assessment of release of dangerous substances. Determination of emissions into indoor air. BS EN 16516:2017+A1:2020. London, BSI, 2020