hre

Statement of Verification

BREG EN EPD No.: 000622

This is to verify that the

Environmental Product Declaration provided by:

Living Concrete Ltd

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and

BRE Global Scheme Document SD207

This declaration is for: 1 m³ of GRC BTX concrete (1800 kg/m3)

Company Address

Living Concrete Ltd West Moseley Site 137C Armfield Close West Moseley Surrey KT8 2RT

Emma Baker 30 July 2024 Signed for BRE Global Ltd Date of this Issue Operator 30 July 2024 29 July 2029 Date of First Issue Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

BF1805-C-ECOP Rev 0.3

Page 1 of 16

BRE/Global FPD

Issue 01

Environmental Product Declaration

EPD Number: 000622

General Information

EPD Programme Operator	Applicable Product Category Rules					
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2023 Product Category Rules for Type III environmental product declaration of construction products to EN 15804+A2 PN 514 Rev 3.1					
Commissioner of LCA study	LCA consultant/Tool					
Living Concrete Ltd West Moseley Site 137C Armfield Close West Moseley Surrey KT8 2RT	Flavie Lowres/LINA A2					
Declared/Functional Unit	Applicability/Coverage					
1 m ³ of GRC BTX concrete (1800 kg/m ³)	Product Specific.					
EPD Type	Background database					
Cradle to Gate with Modules C and D	Ecoinvent 3.8					
Demonstra	tion of Verification					
CEN standard EN 15	i804 serves as the core PCR ^a					
Independent verification of the declara □Internal	ation and data according to EN ISO 14025:2010					
(Where appropr Bala	iate ^ь) Third party verifier: Subramanian					
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)					
Co	mparability					
Environmental product declarations from different EN 15804:2012+A2:2019. Comparability is further depert and allocations, and background data sources. See Cla	programmes may not be comparable if not compliant with endent on the specific product category rules, system boundaries ause 5.3 of EN 15804:2012+A2:2019 for further guidance					

EPD Number: 000622 BF1805-C-ECOP Rev 0.3 Date of Issue:30 July 2024 Page 2 of 16

Information modules covered

Draduat				Use stage											Benefits and loads beyond	
	roduc	τ	Const	ruction	Related to the building fabric			Related to End-of-life the building				the system boundary				
A 1	A2	A3	A 4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
\checkmark	V	V										V	V	V	V	V

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

The GRC BTX concrete is manufactured at the following site:

Living Concrete Ltd West Moseley Site 137C Armfield Close West Moseley Surrey KT8 2RT

Construction Product:

Product Description

The Living Concrete Ltd's GRC BTX concrete mix is a glass fibre reinforced concrete. It can be used for various applications ranging from concrete panels and flooring, furniture, worktops, and wash basins. The concrete mix can be sprayed, moulded, and cast in any shape or forms.

The products all use the same mix, they just vary in size and shape, using different mould sizes and shapes depending on the final product.

This EPD therefore covers 1 m³ of concrete mix and includes all stages of the processes to obtain a finished product.

The density of the concrete mix design is 1800 kg/m³. By using the results of the concrete mix, the end user can calculate the impact of products using the volume (or size) of concrete used in the product. An example calculation has been provided at the end of this document in the Appendix section.

Technical Information

Living Concrete Ltd is ISO14001 compliant.

Technical properties	Result
Weight	1800 kg/m ³

Note: For other technical information, please contact Living Concrete Ltd.

Main Product Contents

The product composition is:

Material/Chemical Input	%
Cement	47%
Sand	47%
Pigment	2%
Glass fibre	1%
Plasticizer	3%

Manufacturing Process

The process of manufacturing GRC (Glass Reinforced Concrete) involves several steps, from the delivery of raw materials to packaging onto pallets:

1. Raw materials are delivered to site

2. The raw materials are mixed in a concrete mixer until a uniform flowing mix is achieved

3. The concrete mix is poured into moulds designed for the desired product shapes and covered with plastic sheets to retain moisture for 24-48 hours. This is the initial curing phase

5. After the initial curing period, the GRC products are removed from the moulds and allowed to cure for an additional 5-7 days while still covered with plastic to maintain a controlled curing environment.

7. Finally, the plastic cover is removed, and the products are allowed to cure for another 7-14 days under controlled conditions.

8. Once the GRC products have completed the curing process, a sealer may be applied to enhance their durability and appearance.

9. The cured and sealed GRC products are packaged onto pallets for storage or transportation.

Process flow diagram

End of Life

C1: the GRC BTX products are taken out of a building using mechanical tools. it was assumed that the amount of energy is very small and assumed to be zero in this EPD. this assumption is based on actual practice

C2: all elements of the system can be disassembled and recycled through commonly available waste management processing plant estimated to be 50 km from a typical site.

C3: no processing is required. 95% of concrete is recycled in accordance with BRE's PCR for EN15804+A2:2019

C4: 5% is landfill, in accordance with BRE's PCR for EN15804+A2:2019

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1 m³ GRC BTX concrete (1800 kg/m³)

System boundary

In accordance with the modular approach as defined in EN15804:2012+A2:2019 and BRE 2023 PCR PN514 Rev 3.1, this cradle to gate with C and D EPD includes the processes covered in the manufacturing site and product stage A1 to A3, End-of-life stages C1 to C4 and Module D.

Data sources, quality and allocation

Specific primary data derived from the Living Concrete Ltd production process in the West Moseley factory, in Surrey (UK), have been modelled using LINA A2 software for the period (01/01/2022 to 31/12/2022). In accordance with the requirements of EN15804, the most current available data has been used. Secondary data

EPD Number: 000622	Date of Issue:30 July 2024	Expiry Date 29 July 2029
BF1805-C-ECOP Rev 0.3	Page 5 of 16	© BRE Global Ltd, 2024

has been obtained for all remaining upstream and downstream processes that are beyond the control of the manufacturer from the ecoinvent 3.8 database. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs, according to the requirements specified in EN15804+A2:2019. The GRC BTX concrete mix is the only product to processed at the West Mosely factory. 100% of data have been allocated to the product as it is the only product manufactured in the factory. By using the concrete mix, different products such as concrete panels, flooring, furniture, worktops, and wash basins are produced. These products are created using different mould sizes and shapes, depending on the final product, and vary only in size and shape. Therefore, the materials used for the moulding and casting process are also included in the analysis. This EPD covers 1 m³ of concrete mix and includes all stages of the processes to obtain a finished product.

Quality Level Geographical

Datasets representative of UK electricity have been selected from the ecoinvent LCI. The quality level of time representativeness is good as the background LCI datasets are based on ecoinvent v3.8 which was compiled in 2021. Therefore, the most appropriate LCA data have been used. The input quantities have been uplifted to match the mass balance requirements. A proxy dataset "unspecified organic chemical" was used for the plasticiser.

Data quality

Technical representativeness: Data from processes and products under study. Same state of technology applied as defined in goal and scope (i.e. identical technology). Technical representativeness is therefore Very Good

Time representativeness: There is less than 5 years between the ecoinvent LCI reference year, and the time period for which the LCA was undertaken. The quality level of time representativeness is Very Good as the background LCI datasets are based on ecoinvent v3.8 which was compiled in 2021. Therefore, there is less than 1 years between the ecoinvent LCI reference year and the time period for which the LCA was undertaken.

Geographical representativeness: Specific UK datasets have been selected from the ecoinvent LCI for this LCA. The quality level of geographical representativeness is therefore Very Good.

The GWP of the dataset used for this EPD is: 1 kWh UK electricity = 2E-01 kgCO2eq (Electricity GB (kWh) market for electricity, medium voltage)

Cut-off criteria

This study includes the manufacturing of Living Concrete Ltd's GRC BTX concrete and the end-of-life scenarios of this product (modules C and D). The final products are wrapped in stretch film and transported on pallets. The amount of stretch film used in the period is negligeable and was therefore not accounted for in this EPD. The pallets are reused, and none were bought in the period and therefore was also not included in this EPD. There are no emissions to air, water and soil in the analysis.

hre

LCA Results - 1 m3 GRC BTX concrete (1800 kg/m3)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts											
			GWP-total	GWP- fossil	GWP- biogenic	GWP-luluc	ODP	AP	EP- freshwate r		
			kg CO ₂ eq	kg CO ₂ eq	kg CO₂ eq	kg CO₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq		
Product stage	Raw material supply	A1	1.05E+03	1.04E+03	9.58E+00	5.69E-01	7.58E-05	3.82E+00	2.20E-01		
	Transport	A2	3.25E+01	3.24E+01	2.76E-02	1.28E-02	7.51E-06	1.33E-01	2.09E-03		
	Manufacturing	A3	7.41E+02	8.06E+02	-6.82E+01	9.31E-01	7.75E-05	4.36E+00	2.35E-01		
	Total (Consumption grid)	A1-3	1.82E+03	1.88E+03	-5.86E+01	1.51E+00	1.61E-04	8.31E+00	4.57E-01		
Scenario: 95%	6 of the concrete is	recycle	ed and 5% is	landfilled							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
End of life	Transport	C2	1.50E+01	1.50E+01	1.28E-02	5.87E-03	3.46E-06	6.07E-02	9.63E-04		
End of life	Waste processing	C3	6.87E+00	6.87E+00	2.43E-03	6.86E-04	1.47E-06	7.14E-02	2.13E-04		
	Disposal	C4	4.75E-01	4.74E-01	4.70E-04	4.48E-04	1.92E-07	4.46E-03	4.34E-05		
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-1.44E+01	-1.42E+01	-1.84E-01	-2.00E-02	-1.14E-06	-9.13E-02	-7.73E-03		

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil;

GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

hre

LCA Results (continued) - 1 m³ GRC BTX concrete (1800 kg/m³)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Paramete	Parameters describing environmental impacts												
			EP-marine	EP- terrestrial	POCP	ADP- mineral&m etals	ADP-fossil	WDP	PM				
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence				
Product stage	Raw material supply	A1	8.88E-01	9.87E+00	2.78E+00	5.16E-03	1.01E+04	3.44E+02	3.00E-05				
	Transport	A2	3.99E-02	4.36E-01	1.33E-01	1.13E-04	4.90E+02	2.21E+00	2.80E-06				
	Manufacturing	A3	1.27E+00	1.30E+01	3.72E+00	5.99E-03	1.55E+04	6.67E+02	6.64E-05				
	Total (Consumption grid)	A1-3	2.20E+00	2.33E+01	6.63E+00	1.13E-02	2.61E+04	1.01E+03	9.92E-05				
Scenario: 95%	6 of the concrete	is recy	cled and 5% i	s landfilled									
	Deconstructio n, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
End of life	Transport	C2	1.83E-02	2.00E-01	6.12E-02	5.20E-05	2.26E+02	1.02E+00	1.29E-06				
	Waste processing	C3	3.16E-02	3.46E-01	9.53E-02	3.53E-06	9.43E+01	2.18E-01	1.46E-05				
	Disposal	C4	1.55E-03	1.70E-02	4.94E-03	1.08E-06	1.32E+01	6.07E-01	8.98E-08				
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-2.11E-02	-2.54E-01	-6.53E-02	-1.34E-04	-2.09E+02	-2.73E+01	-1.15E-06				

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, accumulated

exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts											
			IRP	ETP-fw	HTP-c	HTP-nc	SQP				
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless				
	Raw material supply	A1	5.44E+01	1.35E+04	5.83E-07	1.32E-05	2.89E+03				
Product stage	Transport	A2	2.52E+00	3.83E+02	1.24E-08	4.01E-07	3.37E+02				
	Manufacturing	A3	2.50E+02	1.83E+04	4.06E-06	1.03E-05	4.21E+04				
	Total (Consumption grid)	A1- 3	3.07E+02	3.22E+04	4.66E-06	2.39E-05	4.53E+04				
Scenario: 9	5% of the concrete	e is ree	cycled and 5% is landfi	lled							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
End of life	Transport	C2	1.16E+00	1.76E+02	5.72E-09	1.85E-07	1.55E+02				
	Waste processing	C3	4.25E-01	5.51E+01	2.13E-09	4.00E-08	1.20E+01				
	Disposal	C4	5.88E-02	8.36E+00	2.12E-10	5.50E-09	2.78E+01				
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-3.23E+00	-2.42E+02	-1.41E-08	-2.54E-07	-1.92E+02				

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing resource use, primary energy												
			PERE	PERM	PERT	PENRE	PENRM	PENRT				
			MJ	MJ	MJ	MJ	MJ	MJ				
Product stage	Raw material supply	A1	6.08E+02	0.00E+00	6.08E+02	1.14E+04	1.28E+03	1.27E+04				
	Transport	A2	6.91E+00	0.00E+00	6.91E+00	4.82E+02	0.00E+00	4.82E+02				
	Manufacturing	A3	-5.70E+03	1.38E+04	8.10E+03	3.33E+03	1.15E+04	1.49E+04				
	Total (Consumption grid)	A1-3	-5.09E+03	1.38E+04	8.71E+03	1.52E+04	1.28E+04	2.81E+04				
Scenario: 9	5% of the concret	e is recy	cled and 5% i	s landfilled								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
End of life	Transport	C2	3.19E+00	0.00E+00	3.19E+00	2.22E+02	0.00E+00	2.22E+02				
	Waste processing	C3	5.28E-01	0.00E+00	5.28E-01	9.24E+01	0.00E+00	9.24E+01				
	Disposal	C4	1.13E-01	0.00E+00	1.13E-01	1.30E+01	0.00E+00	1.30E+01				
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-1.97E+01	0.00E+00	- 1.97E+01	-2.09E+02	0.00E+00	-2.09E+02				

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing resource use, secondary materials and fuels, use of water											
			SM	RSF	NRSF	FW					
			kg	MJ net calorific value	MJ net calorific value	m ³					
Product stage	Raw material supply	A1	1.58E-01	0.00E+00	0.00E+00	8.22E+00					
	Transport	A2	0.00E+00	0.00E+00	0.00E+00	5.46E-02					
	Manufacturing	A3	4.89E+00	0.00E+00	0.00E+00	1.58E+01					
	Total (Consumption grid)	A1- 3	5.05E+00	0.00E+00	0.00E+00	2.41E+01					
Scenario: 95	% of the concrete	is recy	cled and 5% is landfille	ed							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	2.52E-02					
	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	5.38E-03					
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	1.42E-02					
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-6.45E-01					

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Other environmental information describing waste categories										
			HWD	NHWD	RWD					
			kg	kg	kg					
Product stage	Raw material supply	A1	1.88E+01	6.46E+02	1.21E-02					
	Transport	A2	5.41E-01	9.60E+00	3.32E-03					
	Manufacturing	A3	4.91E+01	1.14E+03	7.11E-02					
	Total (Consumption grid)	A1-3	6.84E+01	1.80E+03	8.65E-02					
Scenario: 95% of the	e concrete is recy	cled and 5	5% is landfilled							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00					
	Transport	C2	2.49E-01	4.43E+00	1.53E-03					
End of life	Waste processing	C3	1.24E-01	8.69E-01	6.52E-04					
	Disposal	C4	1.38E-02	1.94E-01	8.68E-05					
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.20E+00	-3.66E+01	-1.07E-03					

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Other env	Other environmental information describing output flows – at end of life												
			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)					
			kg	kg	kg	MJ per energy carrier	kg C	kg C					
Product stage	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Manufacturing	A3	0.00E+00	6.53E+02	6.50E-06	0.00E+00	8.77E+01	0.00E+00					
	Total (Consumption grid)	A1- 3	0.00E+00	6.53E+02	6.50E-06	0.00E+00	8.77E+01	0.00E+00					
Scenario: 9	5% of the concret	e is ree	cycled and 5% i	s landfilled									
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Waste processing	C3	0.00E+00	1.23E-04	1.97E-06	0.00E+00	0.00E+00	0.00E+00					
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery EE = Exported Energy

Interpretation of results

Scenarios and additional technical information

Scenarios and additional technical information			
Scenario	Parameter	Units	Results
C1 - Deconstruction	The GRC BTX products are taken out of a building using mechanical tools. it was assumed that the amount of energy is very small and assumed to be zero in this EPD. this assumption is based on actual practice		
C2 - Transport from site to pre-processing facility or landfill	Typical transport to a waste processing plant for concrete	km	50
C3 - Pre-processing of uninstalled product (if relevant)	According to BRE's PCR, concrete products are 95% recycled – for 1 $\ensuremath{m^3}$	kg	1,710
C4 – Disposal	According to BRE's PCR, concrete products are 5% landfilled – for 1 m^3	kg	90
Module D	Concrete is widely recycled. It has been assumed that 95% will be recycled, in accordance with BRE's PCR		

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

BS EN ISO 14001:2015 - Environmental management systems. Requirements with guidance for use. London, BSI, 2015.

Appendix – Interpretation of results

58% of the impact of A1-A3 in GWP total is associated with the use of raw materials (A1). A3 represents 41% of the impact.

Sand and cement are both 47% by mass of the product, however cement represents 67% of the impact in GWP total and sand less than 0.5%. 17% of the impact in GWP total are associated with the pigment and the plasticizer accounts for 10% of the impact.

Appendix – how to use the results of this EPD

A panel of a size of 600 x 600 x 15 mm would have a volume of 0.0054 m³. The GWP total of 1 m³ of living concrete mix is 1.82E+03 kgCO₂eq (A1 to A3), so the GWP total of the panel would be: 0.0054 x 1820 = 9.8 kgCO₂eq.