hrp

Statement of Verification

BREG EN EPD No.: 000182

Issue 05

This is to verify that the

Environmental Product Declaration

provided by:

Izmir Demir Celik Sanayi A.S (member of CARES)

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and **BRE Global Scheme Document SD207**

This declaration is for: Non-Alloy Structural Steel (secondary production route scrap)

Company Address

Nemrut Caddesi No.2, Horozgedigi Mahallesi Aliaga Izmir 35807 Turkey

BRE/Global

FPD

Roc Emma Baker Signed for BRE Global Ltd Operator

19 December 2017 Date of First Issue

09 July 2024 Date of this Issue

08 July 2027 Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enguiries@breglobal.com

BF1805-C-ECOP Rev 0.3

Page 1 of 18

© BRE Global Ltd, 2022

Environmental Product Declaration

EPD Number: 000182

General Information

EPD Programme Operator	Applicable Product Category Rules				
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE 2023 Product Category Rules (PN 514 Rev 3.1) for Type III environmental product declaration of construction products to EN 15804:2012+A2:2019				
Commissioner of LCA study	LCA consultant/Tool				
CARES Pembroke House 21 Pembroke Road Sevenoaks Kent, TN13 1XR UK	CARES EPD Tool SPHERA SOLUTIONS UK LIMITED The Innovation Centre Warwick Technology Park Gallows Hill, Warwick Warwickshire CV34 6UW www.sphera.com				
Declared/Functional Unit	Applicability/Coverage				
1 tonne of non-alloy structural steel product manufactured by the direct secondary (scrap-based) production route, for use in a built structure.	Manufacturer-specific product.				
EPD Type	Background database				
Cradle to Gate with Modules C and D and Options	GaBi				
Demonstra	ation of Verification				
CEN standard EN 15	5804 serves as the core PCR ^a				
Independent verification of the declara	ation and data according to EN ISO 14025:2010 ⊠ External				
	riate ^b)Third party verifier: Pat Hermon				
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)				
Co	mparability				
EN 15804:2012+A2:2019. Comparability is further dep	programmes may not be comparable if not compliant with endent on the specific product category rules, system boundaries ause 5.3 of EN 15804:2012+A2:2019 for further guidance				

Information modules covered

	Produc	t	Const	ruction	Rel	ated to		Use sta Iding fa		Relat the bu			End-	of-life		Benefits and loads beyond the system boundary
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
\checkmark	$\mathbf{\nabla}$	V	V	Ø	\checkmark	V	$\mathbf{\nabla}$	V	V	V	V	Ŋ	V	V	V	\checkmark

Note: Ticks indicate the Information Modules declared.

Manufacturing site

Izmir Demir Celik Sanayi A.S (member of CARES)

Nemrut Caddesi No.2, Horozgedigi Mahallesi 35807 Aliaga Izmir Turkey

Construction Product:

Product Description

Non-alloy Structural Steel (according to product standards listed in Sources of Additional Information) that is obtained from scrap, melted in an Electric Arc Furnace (EAF) followed by hot rolling.

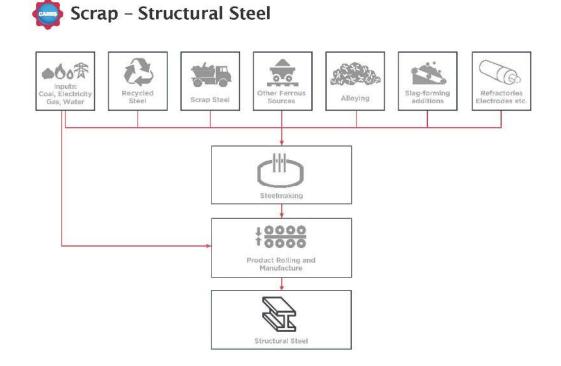
The declared unit is 1 tonne of non-alloy structural steel forms as used in a built structure.

Technical Information

Property	Value, Unit
Production route	EAF
Density	7850 kg/m ³
Modulus of elasticity	200000 N/mm ²
Weldability, Ceq (as per EN 10025-2:2019 grades S235JR/J0/J2, S275JR/J0/J2 and S355JR/J0/J2) (for thickness≤30mm)	max 0.35% for S235JR, S235J0, S235J2 max 0.40% for S275JR, S275J0, S275J2 max 0.45% for S355JR, S355J0, S355J2
Yield Strength (as per EN 10025-2:2019 grades S235JR/J0/J2, S275JR/J0/J2 and S355JR/J0/J2) (for thickness≤16mm and for thickness >16mm & ≤40mm)	225 to 235 N/mm ² for S235JR, S235J0, S235J2 265 to 275 N/mm ² for S275JR, S275J0, S275J2 345 to 355 N/mm ² for S355JR, S355J0, S355J2
Tensile strength (as per EN 10025-2:2019 grades S235JR/J0/J2, S275JR/J0/J2 and S355JR/J0/J2) (for thickness >3mm & ≤100mm)	360 to 510 N/mm ² for S235JR, S235J0, S235J2 410 to 560 N/mm ² for S275JR, S275J0, S275J2 470 to 630 N/mm ² for S355JR, S355J0, S355J2
%Elongation (as per EN 10025-2:2019 grades S235JR/J0/J2, S275JR/J0/J2 and S355JR/J0/J2) (min, for transversal & for longitudinal to the rolling direction, for thickness >3mm & ≤40mm) (L: longitudinal; T: transverse)	T: 24% L: 26% for S235JR T: 21% L: 23% for S275JR, S275J0, S275J2 T: 20% L: 22% for S355JR, S355J0, S355J2
Impact energy value (as per EN 10025-2:2019 grades S235JR/J0/J2, S275JR/J0/J2 and S355JR/J0/J2) (min, for thickness ≤150mm)	min 27J for S235JR, S275JR and S355JR min 27J for S275J0 and S355J0 min 27J for S275J2 and S355J2
Recycled content (as per ISO 14021:2016)	98.8 %

Main Product Contents

Material/Chemical Input	%
Fe	97
C, Mn, Si, V, Ni, Cu, Cr, Mo and others	3


Manufacturing Process

Scrap metal is melted in an electric arc furnace to obtain liquid steel. This is then refined to remove impurities and alloying additions can be added to give the required properties.

Hot metal (molten steel) from the EAF is then cast into steel billets before being sent to the rolling mill where they are rolled and shaped to the required dimensions for the finished non-alloy structural steel products.

The products are packed with steel straps to bind the products, either of the steel ties and products do not include any biogenic materials.

Process flow diagram

Construction Installation

Processing and proper use of non-alloy structural steel products depends on the application and should be made in accordance with generally accepted practices, standards and manufacturing recommendations.

During transport and storage of non-alloy structural steel products the usual requirement for securing loads is to be observed.

Use Information

The composition of the non-alloy structural steel products does not change during use.

Non-alloy structural steel products do not cause adverse health effects under normal conditions of use.

No risks to the environment and living organisms are known to result from the mechanical destruction of the non-alloy structural steel product itself.

End of Life

Structural steel products are not reused at end of life but can be recycled to the same (or higher/lower) quality of steel depending upon the metallurgy and processing of the recycling route.

It is a high value resource, so efforts are made to recycle steel scrap rather than disposing of it at EoL. A recycling rate of 92% is typical for reinforcing steel products.

Life Cycle Assessment Calculation Rules

Declared unit description

The declared unit is 1 tonne of non-alloy structural steel product manufactured by the secondary (scap-based) production route, for use in a built structure (i.e. 1 tonne in use, accounting for losses during fabrication and installation, not 1 tonne as produced).

System boundary

The system boundary of the EPD follows the modular design defined by EN 15804+A2. This is a cradle to gate – with all options EPD and thus covers all modules from A1 to C4 and includes module D as well.

Impacts and aspects related to losses/wastage (i.e. production, transport and waste processing and end-of-life stage of lost waste products and materials) are considered in the modules in which the losses/wastage occur.

Once steel scrap has been collected for recycling it is considered to have reached the end of waste state.

Data sources, quality and allocation

Data Sources: Manufacturing data of the period 01/01/2022-31/12/2022 has been provided by Izmir Demir Celik Sanayi A.S (member of CARES).

The selection of the background data for electricity generation is in line with the BRE Global PCR. Country or region specific power grid mixes are selected from GaBi 2021 databases (Sphera 2021); thus, consumption grid mix of Turkey has been selected to suit specific manufacturing location.

Data Quality: Data quality can be described as good. Background data are consistently sourced from the GaBi 2021 databases (Sphera 2021). The primary data collection was thorough, considering all relevant flows and these data have been verified by CARES.

Data quality level and criteria of the UN Environment Global Guidance on LCA database development:

Geographical Representativeness	: Good
Technical Representativeness	: Very good
Time Representativeness	: Good

Allocation: EAF slag and mill scale are produced as co-products from the steel manufacturing process. Impacts are allocated between the steel, the slag and the mill scale based on economic value. The revenue generated from both mill scale and EAF slag are 0.01% and 0.32% respectively, and their total is less than 1% in relation to the product based on current market prices, these co-products are of definite value and are freely/readily traded in reality. For this reason, economic allocation has been applied to the processes where these co-products arise.

Production losses of steel during the production process are recycled in a closed loop offsetting the requirement for external scrap. Specific information on allocation within the background data is given in the GaBi datasets documentation (/GaBi 6 2021/)

Cut-off criteria

On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered. All inputs used as well as all process-specific waste and process emissions were assessed. For this reason, material streams which were below 1% (by mass) were captured as well. In this manner the cut-off criteria according to the BRE guidelines are fulfilled.

The mass of steel strap used for binding the product is less than 1 % of the total mass of the product.

hre

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters de	escribing enviro	nmen	tal impa	cts					
			GWP- total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwate r
			kg CO₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq
	Raw material supply	A1	286	286	-0.502	0.086	1.07E-06	1.23	2.10E-04
Product stage	Transport	A2	92.3	92.2	0.116	0.013	9.50E-15	3.47	2.44E-05
Product stage	Manufacturing	A3	614	612	1.080	0.241	1.61E-12	5.27	3.04E-04
	Total (of product stage)	A1-3	9.92E+02	9.90E+02	0.694	0.339	1.07E-06	9.97	5.38E-04
Construction	Transport	A4	16.8	16.7	-0.021	0.137	2.14E-15	0.049	4.97E-05
process stage	Construction	A5	111	111	0.084	0	1.06E-07	1.12	7.33E-05
	Use	B1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0	0
%92 Recycling / %8	3 Landfill Scenario	1							
End of life	Deconstruction, demolition	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
	Transport	C2	40.6	40.3	-0.046	0.312	5.10E-15	0.178	1.14E-04
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	1.18	1.21	-0.035	0.004	4.70E-15	0.009	2.03E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	617	618	-1.08	0.015	-2.89E-12	1.71	1.07E-04
100% Lanfill Scena	rio								
	Deconstruction, demolition	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
End of life	Transport	C2	1.88	1.86	-0.002	0.015	2.38E-16	0.007	5.53E-06
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	14.7	15.1	-0.439	0.044	5.87E-14	0.108	2.54E-05
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	2.63E+03	2.63E+03	-4.59	0.062	-1.23E-11	7.27	4.55E-04
100% Recycling Sc	enario								
	Deconstruction, demolition	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
End of life	Transport	C2	43.9	43.6	-0.049	0.338	5.53E-15	0.192	1.23E-04
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	442	443	-0.773	0.010	-2.07E-12	1.22	7.66E-05

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer;

AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

Date of Issue:09 July 2024 Page 7 of 18

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters of	describing enviro	nment	tal impac	cts					
			EP- marine	EP- terrestri al	POCP	ADP- mineral &metals	ADP- fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq	disease incidenc e
	Raw material supply	A1	0.884	2.07	0.572	1.27E-05	2.87E+03	17.4	1.41E-05
	Transport	A2	0.884	9.68	2.48	2.82E-06	1.12E+03	0.151	5.79E-05
Product stage	Manufacturing	A3	0.433	4.73	1.43	4.15E-05	7.92E+03	250	4.77E-0
	Total (of product stage)	A1-3	2.20	16.5	4.48	5.70E-05	1.19E+04	2.68E+0 2	1.20E-04
Construction	Transport	A4	0.022	0.248	0.044	1.27E-06	223	0.145	2.72E-0
process stage	Construction	A5	0.167	1.83	0.491	6.92E-06	1.35E+03	33.0	1.30E-0
	Use	B1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0	0
-	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0	0
%92 Recycling / %	%8 Landfill Scenario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.085	0.940	0.179	2.97E-06	536	0.334	1.39E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.002	0.025	0.007	1.14E-07	16.0	0.130	1.07E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.355	3.84	1.19	-1.32E-05	4.51E+03	-12.7	2.23E-0
100% Lanfill Scer	nario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.003	0.035	0.006	1.42E-07	24.8	0.016	3.43E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.028	0.307	0.085	1.43E-06	201	1.62	1.34E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	1.51	16.3	5.04	-5.63E-05	1.92E+04	-54.1	9.49E-0
100% Recycling S	Scenario								
End of life	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
	Transport	C2	0.092	1.02	0.194	3.22E-06	581	0.362	1.50E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.254	2.75	0.85	-9.48E-06	3.23E+03	-9.11	1.60E-0

Parameters describing environmental impacts

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, accumulated exceedance;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

POCP = Formation potential of tropospheric ozone; ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

EPD Number: 000182 BF1805-C-ECOP Rev 0.2 Date of Issue:09 July 2024 Page 8 of 18

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

			IRP	ETP-fw	HTP-c	HTP-nc	SQP
		-	kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionles
	Raw material supply	A1	4.90	2.10E-04	3.59E-08	2.92E-06	241
Product stage	Transport	A2	0.178	2.44E-05	1.51E-08	7.06E-07	9.06
Product stage	Manufacturing	A3	1.07	3.04E-04	9.21E-08	3.85E-06	374
	Total (of product stage)	A1-3	6.15	5.38E-04	1.43E-07	7.48E-06	6.24E+02
Construction	Transport	A4	0.039	4.97E-05	3.25E-09	1.89E-07	76.5
process stage	Construction	A5	0.688	7.33E-05	1.12E-08	8.67E-07	94.7
	Use	B1	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0
	Repair	B3	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0
-	Refurbishment	B5	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0
%92 Recycling / %8	3 Landfill Scenario						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.092	1.14E-04	7.79E-09	4.56E-07	174
End of life	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.018	2.03E-06	1.35E-09	1.49E-07	3.24
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-7.07	1.07E-04	9.81E-07	3.35E-06	-369
100% Lanfill Scena	rio						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.004	5.53E-06	3.61E-10	2.14E-08	8.51
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.221	2.54E-05	1.69E-08	1.86E-06	40.5
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-30.1	4.55E-04	4.17E-06	1.42E-05	-1.57E+03
100% Recycling Sc	enario						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.100	1.23E-04	8.44E-09	4.94E-07	189
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.07	7.66E-05	7.03E-07	2.40E-06	-264

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing resource use, primary energy

			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	231	0	231	2.87E+03	0	2.87E+03
	Transport	A2	4.77	0	4.77	1.12E+03	0	1.12E+03
Product stage	Manufacturing	A3	1.76E+03	0	1.76E+03	7.92E+03	0	7.92E+03
	Total (of product stage)	A1-3	2.00E+03	0	2.00E+03	1.19E+04	0	1.19E+04
Construction	Transport	A4	12.4	0	12.4	223	0	223
process stage	Construction	A5	247	0	247	1.35E+03	0	1.35E+03
	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0
0-	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / %	%8 Landfill Scenario							
	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
End of life	Transport	C2	28.4	0	28.4	537	0	537
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	2.16	0	2.16	16.1	0	16.1
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-575	0	-575	4.56E+03	0	4.56E+03
100% Landfill Sce	enario							
	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
End of life	Transport	C2	1.38	0	1.38	24.8	0	24.8
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	27.0	0	27.0	201	0	201
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-2.45E+03	0	-2.45E+03	1.94E+04	0	1.94E+04
100% Recycling S	Scenario							
End of life	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
	Transport	C2	30.7	0	30.7	582	0	582
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	231	0	231	3.27E+03	0	3.27E+03

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resource

materials; PERT = Total use of renewable primary energy resources;

EPD Number: 000182 BF1805-C-ECOP Rev 0.2 Date of Issue:09 July 2024 Page 10 of 18

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing resource use, secondary materials and fuels, use of water

			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m ³
	Raw material supply	A1	0	0	0	17.4
Due duet sterre	Transport	A2	0	0	0	0.151
Product stage	Manufacturing	A3	-1.23E+03	0	0	250
	Total (of product stage)	A1-3	-1.23E+03	0	0	2.68E+02
Construction	Transport	A4	0	0	0	0.145
process stage	Construction	A5	0	0	0	33.0
	Use	B1	0	0	0	0
	Maintenance	B2	0	0	0	0
	Repair	B3	0	0	0	0
Use stage	Replacement	B4	0	0	0	0
	Refurbishment	B5	0	0	0	0
	Operational energy use	B6	0	0	0	0
	Operational water use	B7	0	0	0	0
%92 Recycling / %8	Landfill Scenario					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.334
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0.130
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	306	0	0	-12.7
100% Landfill Scena	rio					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.016
2	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	1.62
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.23E+03	0	0	-54.1
100% Recycling Sce	nario					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.362
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	226	0	0	-9.11

SM = Use of secondary material;

RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Other environmental information describing waste categories

			HWD	NHWD	RWD	
			kg	kg	kg	
	Raw material supply	A1	1.62E-07	1.81	0.049	
Product stage	Transport	A2	9.44E-09	0.113	1.25E-03	
Floudel stage	Manufacturing	A3	1.20E-06	27.5	0.014	
	Total (of product stage)	A1-3	1.37E-06	29.4	0.064	
Construction	Transport	A4	1.12E-08	0.033	2.70E-04	
process stage	Construction	A5	1.60E-07	12.7	0.007	
	Use	B1	0	0	0	
	Maintenance	B2	0	0	0	
	Repair	B3	0	0	0	
Use stage	Replacement	B4	0	0	0	
	Refurbishment	B5	0	0	0	
	Operational energy use	B6	0	0	0	
	Operational water use	B7	0	0	0	
%92 Recycling / %8	Landfill Scenario					
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05	
End of life	Transport	C2	2.58E-08	0.078	6.46E-04	
	Waste processing	C3	0	0	0	
	Disposal	C4	1.70E-09	80.1	1.68E-04	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.53E-07	8.94	-0.074	
100% Landfill Scena	rio					
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05	
To do 616	Transport	C2	1.25E-09	0.004	3.00E-05	
End of life	Waste processing	C3	0	0	0	
	Disposal	C4	2.13E-08	1.00E+03	0.002	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.35E-06	38.0	-0.316	
100% Recycling Sce	nario					
End of life	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05	
	Transport	C2	2.79E-08	0.085	6.99E-04	
	Waste processing	C3	0	0	0	
	Disposal	C4	0	0	0	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-3.96E-07	6.41	-0.053	

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated) Other environmental information describing output flows – at end of life

			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
Product stage	Raw material supply	A1	0	0	0	0	0	0
	Transport	A2	0	0	0	0	0	0
	Manufacturing	A3	0	0	0	0	0	0
	Total (of product stage)	A1-3	0	0	0	0	0	0
Construction process stage	Transport	A4	0	0	0	0	0	0
	Construction	A5	0	-18.8	0	0	0	0
Use stage	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0
	Replacement	B4	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / %8 I	Landfill Scenario							
End of life	Deconstruction, demolition	C1	0	-920	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Landfill Scenar	rio							
End of life	Deconstruction, demolition	C1	0	0	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Recycling Sce	nario							
End of life	Deconstruction, demolition	C1	0	-1.00E+03	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenario	Parameter	Units	Results		
	On leaving the steelworks the structural steel products are transported to a fabricator where they are converted into constructional steel forms suitable for the installation site, then transported on to the construction site, including provision of all materials and products. Road transport distance for rolled steel to fabricators and road transport distance for steel construction forms to site are assumed to be 100 km and 250 km, respectively. Only the one-way distance is considered as it is assumed that the logistics companies will optimise their distribution and not return empty in modules beyond A3.				
A4 – Transport to the building site	Truck trailer - Fuel	litre/km	1.56		
	Distance	km	350		
	Capacity utilisation (incl. empty returns)	%	85		
	Bulk density of transported products	kg/m ³	7850		
	The fabrication process is a relatively simple unit process and accounts for the transformation of the rolled steel product into construction steel forms. The operations in this unit process a primarily cutting and welding. As such, other inputs to the process include electricity, thermat energy, and cutting gases. Other outputs of this process are steel scrap and wastewater (where applicable).Fabrication into structural steel products and installation in the building; including provision of all materials, products, and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. Installation of the fabricated produints the building is assumed to result in 10% wastage (determined based on typical installation sees reported by the WRAP Net Waste Tool [WRAP 2017]). It is assumed that fabrication requires 15.34 kWh/tonne finished product, and that there is a 2% wastage associated with this process.Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms%2Energy Use - Energy per tonne required to fabricate construction steel formskWh15.34Waste materials from installation wastage%10				
	into the building is assumed to result in 10% wastage (deter losses reported by the WRAP Net Waste Tool [WRAP 2017 requires 15.34 kWh/tonne finished product, and that there is this process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms	rmined based on ty 7]). It is assumed th s a 2% wastage as % kWh	pical installation at fabrication sociated with 2 15.34		
the building	into the building is assumed to result in 10% wastage (deter losses reported by the WRAP Net Waste Tool [WRAP 2017 requires 15.34 kWh/tonne finished product, and that there is this process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms	rmined based on ty 7]). It is assumed th s a 2% wastage as % kWh	pical installation at fabrication sociated with 2 15.34		
the building B2 – Maintenance	into the building is assumed to result in 10% wastage (dete losses reported by the WRAP Net Waste Tool [WRAP 2017 requires 15.34 kWh/tonne finished product, and that there i this process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms Waste materials from installation wastage	rmined based on ty 7]). It is assumed th s a 2% wastage as % kWh	pical installation at fabrication sociated with 2 15.34		
the building B2 – Maintenance B3 – Repair	into the building is assumed to result in 10% wastage (dete losses reported by the WRAP Net Waste Tool [WRAP 2017 requires 15.34 kWh/tonne finished product, and that there i this process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms Waste materials from installation wastage No maintenance required	rmined based on ty 7]). It is assumed th s a 2% wastage as % kWh	pical installation at fabrication sociated with 2 15.34		
A5 – Installation in the building B2 – Maintenance B3 – Repair B4 – Replacement B5 – Refurbishment	 into the building is assumed to result in 10% wastage (deter losses reported by the WRAP Net Waste Tool [WRAP 2017) requires 15.34 kWh/tonne finished product, and that there is this process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms Waste materials from installation wastage No maintenance required No repair process required 	rmined based on ty 7]). It is assumed th s a 2% wastage as % kWh	pical installation at fabrication sociated with 2 15.34		
the building B2 – Maintenance B3 – Repair B4 – Replacement	 into the building is assumed to result in 10% wastage (deter losses reported by the WRAP Net Waste Tool [WRAP 2017) requires 15.34 kWh/tonne finished product, and that there is this process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms Waste materials from installation wastage No maintenance required No replacement considerations required 	rmined based on ty 7]). It is assumed th s a 2% wastage as % kWh %	rpical installation at fabrication sociated with 2 15.34 10 ce service life ons provided in s" as having a		

Scenario	Parameter Units	Res	sults	
	The end-of-life stage starts when the construction product is replaced deconstructed from the building or construction works and does not function. The recovered steel is transported for recycling while a sign be unrecoverable and remains in the rubble which is sent to landfill steel is assumed to be recycled and 8% is sent to landfill [STEELC 2012]. Once steel scrap is generated through the deconstruction activities considered to have reached the "end of waste" state. No further pr there are no impacts associated with this module. Hence no impact C3.	ot provide any furth nall portion is ass I. 92% of the reinf CONSTRUCTION. s on the demolition ocessing is requir	ide any further ortion is assumed to o of the reinforcing IRUCTION.INFO e demolition site it is ing is required so	
	Waste for recycling - Recovered steel from crushed concrete	%	92	
C1 to C4 End of life,	Waste for energy recovery - Energy recovery is not considered for study as most end of life steel scrap is recycled, while the remaind landfilled		-	
	Waste for final disposal - Unrecoverable steel lost in crushed conc and sent to landfill	70	8	
	Portion of energy assigned to rebar from energy required to demol building, per tonne	ish MJ	24	
	Transport to waste processing by Truck - Fuel consumption	litre/km	1.56	
	Transport to waste processing by Truck – Distance	km	463	
	Transport to waste processing by Truck – Capacity utilisation	%	85	
	Transport to waste processing by Truck – Density of Product	kg/m ³	7850	
	Transport to waste processing by Container ship - Fuel consumption	on litre/km	0.004	
	Transport to waste processing by Container ship - Distance	km	158	
	Transport to waste processing by Container ship – Capacity utilisa	tion %	50	
	Transport to waste processing by Container ship – Density of Prod	uct kg/m ³	7850	
Module D	It is assumed that 92% of the steel used in the structure is recovered for recycling, while the remainder is landfilled. "Benefits and loads beyond the system boundary" (module D) accords for the environmental benefits and loads resulting from net steel scrap that is used as raw material in the EAF and that is collected for recycling at end of life. The balance between the scrap arisings recycled from fabrication, installation and end of life and scrap consumed by manufacturing process (internally sourced scrap is not included in this calculation). These benefits and loads are calculated by including the burdens of recycling and the benefit of avoided primary production. This study is concerned with the secondary production route and more scrap is required as input to the system than is recovered at end of life. The net effect of this is that module D mainly models the burdens associated with the scrap input (secondary material) to the steelmaking process. The resulting scrap credit/burden is calculated based on the global "value of scrap" approa			
	(/worldsteel 2011).	· ·		
	Recycled Content	kg	988	
	Re-used Content	kg	0	
	Recovered for recycling	kg	920	
	Recovered for re-use	kg	0	

Summary, comments and additional information

Interpretation

Scrap based non-alloy structural steel product of Izmir Demir Celik Sanayi A.S (member of CARES) is made via the EAF route. The bulk of the environmental impacts and primary energy demand is attributed to the manufacturing phase, covered by information modules A1-A3 of EN 15804+A2.

The interpretation of the results has been carried out considering the methodology- and data-related assumptions and limitations declared in the EPD. This interpretation section focuses on the environmental impact categories as well as the primary energy demand indicators only.

Global Warming Potential (GWP)

The majority of the life cycle GWP impact occurs in the production phase (A1-A3). A1-A3 impacts account for 85.25% overall life cycle impacts for this category. The most significant contributions to production phase impacts are: the upstream production of raw materials used in the steelmaking process, generation/supply of electricity and the production/use of fuels on site. Fabrication, installation and the end-of-life processes covered in C1-C4 make a minimal contribution to GWP. For overall climate change impacts, carbon dioxide emissions account for the majority of impacts with methane being the second most significant contributor.

Ozone Depletion Potential (ODP)

The majority of impacts are associated with the production phase (A1-3). Significant contributions to production phase impact come from the emission of ozone depleting substances during the upstream production of raw materials/preproducts as well as those arising from electricity production. Module D shows a very small credit even though scrap burdens are being assessed in this phase. This is explained because ODP emissions are linked to grid electricity production used.

Acidification Potential (AP)

Acidification potential is generally driven by the production of sulphur dioxide and nitrogen oxides through the combustion of fossil fuels, particularly coal and crude oil products. The majority of the lifecycle AP impact occurs in the production phase (A1-A3), similar to GWP. The major contributors to production phase AP impacts comes from energy resources used in the production of the raw materials and pre-products for the steelmaking process and from transportation. Fabrication, installation and the end-of-life processes classed under C1-C4 make minimal contributions.

Eutrophication Potential (EP)

Eutrophication is driven by nitrogen and phosphorus containing emissions and as with GWP and AP is often strongly linked with the use of fossil fuels. The major eutrophication impacts occur in the production phase (A1-A3). Significant contributions to production phase impact comes from the production of raw materials and transport. Fabrication, installation and the end-of-life processes classed under C1-C4 again make minimal contributions.

Photochemical Ozone Creation Potential (POCP)

POCP tends to be driven by emissions of carbon monoxide, nitrogen oxides (NOx), sulphur dioxide and NMVOCs. The production phase is the dominant phase of the lifecycle with regards to POCP impacts. Again, these are all emissions commonly associated with the combustion of fuels. Significant contributors to POCP are the upstream production of raw materials/pre-products and transport, directly linked to fossil fuel combustion. It should be noted that the impacts for steel recycling in module D is almost of the same magnitude as the production phase impacts.

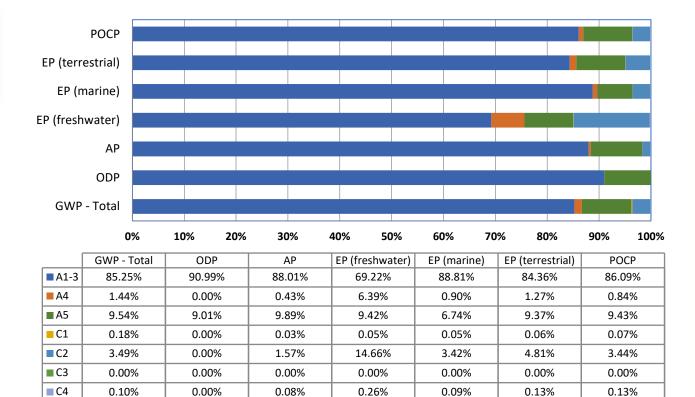


Figure 1 - shows the relative contribution of each life cycle stage to different environmental indicators for the carbon steel reinforcing bars manufactured by the Direct Reduced Iron production route

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO BS EN ISO 14040:2006+A1:2020. London, BSI, 2020.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006+A2:2020. London, BSI, 2020.

Demolition Energy Analysis of Office Building Structural Systems, Athena Sustainable Materials Institute, 1997

Sphera Solutions GmbH; GaBi Software System and Database for Life Cycle Engineering, Sphera Solution GmbH, Leinfelden-Echterdingen, 2021.

GaBi 10, Content Version 2021.2: Documentation of GaBi 10, Content Version 2021.2: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 2021. (http://documentation.gabi-software.com/)

International Energy Agency, Energy Statistics 2013. http://www.iea.org

EPD Number: 000182	Date of Issue:09 July 2024	
BF1805-C-ECOP Rev 0.2	Page 17 of 18	

Kreißig, J. und J. Kümmel (1999): Baustoff-Ökobilanzen. Wirkungsabschätzung und Auswertung in der Steine-Erden-Industrie. Hrsg. Bundesverband Baustoffe Steine + Erden e.V.

U,S, Geological Survey, Mineral Commodity Summaries, Iron and Steel Slag, January 2014

SteelConstruction.info; The recycling and reuse survey, 2012 http://www.steelconstruction.info/The_recycling_and_reuse_survey

Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

CARES SCS Sustainable Constructional Steel Scheme v9 – Operational assessment schedule – <u>https://www.carescertification.com/certified-companies/search</u> - Certificate number of conformance to SCS v9 at the time of LCA study – 1234.

Appendix CPR02 CARES Quality and Operations Assessment Schedule for Factory Production Control Certification of Hot rolled products of structural steels to BS EN 10025 - <u>https://www.carescertification.com/certified-companies/search</u> - Certificate number of conformance to BS EN10025-2 at the time of LCA study – 1244-CPR-1029

BS EN 10025-1:2004 - Hot Rolled Products of Structural Steels - Part 1: General Technical Delivery Conditions

BS EN 10025-2:2019 - Hot Rolled Products of Structural Steels - Part 2: Technical Delivery Conditions for Non-alloy Structural Steels

BS 4-1:2005 - Structural steel sections. Specification for hot-rolled sections.

BS EN 10365:2017 - Hot rolled steel channels, I and H sections. Dimensions and masses

ASTM A6 / A6M – 23 - Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling.

ASTM A36/A36M-19 Standard Specification for Carbon Structural Steel

ASTM A572/A572M-21 Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel

ASTM A529 / A529M – 19 Standard Specification for High-Strength Carbon-Manganese Steel of Structural Steel

CSA G40.20-04/G40.21-04 General requirements for rolled or welded structural quality steel/Structural quality steel