Statement of Verification

BREG EN EPD No.: 000526

Issue 01

BRE/Global

EPD

. . .

HEMPEL

Hempafloor

This is to verify that the

Environmental Product Declaration provided by: HEMPEL A/S

is in accordance with the requirements of:

EN 15804:2012+A2:2019

anc

BRE Global Scheme Document SD207

This declaration is for: **1 kilogram of Hempafloor Fill 200 (35270) paint**

Company Address

HEMPEL A/S Lundtoftegårdsvej 91 DK-2800 Kgs. Lyngby Denmark

Emma Baker

25 September 2023 Date of this Issue

igned for BRE Global Ltd

Operator

24 September 2028

25 September 2023 Date of First Issue

24 Septem

This Statement of Verification is issued subject to terms and conditions (for details visit <u>www.greenbooklive.com/terms</u>. To check the validity of this statement of verification please, visit <u>www.greenbooklive.com/check</u> or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: <u>Enquiries@breglobal.com</u>

BF1805-C-ECOP Rev 0.3

Page 1 of 15

© BRE Global Ltd, 2022

Environmental Product Declaration

EPD Number: 000526

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804+A2 PN 514 Rev 3.0.							
Commissioner of LCA study	LCA consultant/Tool							
HEMPEL A/S Lundtoftegårdsvej 91 DK-2800 Kgs. Lyngby Denmark	ITeC - The Catalonia Institute of Construction Technology Wellington 19 - ES08018 Barcelona - Tel +34 933 093 404 www.itec.cat							
	SimaPro Version 9.1.1 by PRé Sustainability BV.							
Declared/Functional Unit	Applicability/Coverage							
1 kilogram of Hempafloor Fill 200 (35270) paint	Product Specific							
ЕРД Туре	Background database							
Cradle to Gate with Modules C and D	Ecoinvent v3.6 (2019) database CEPE Raw Material database v3.0							
Demonstra	tion of Verification							
CEN standard EN 15	5804 serves as the core PCR ^a							
Independent verification of the declara	Independent verification of the declaration and data according to EN ISO 14025:2010							
	riate ^b)Third party verifier: ?at Hermon							
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)							

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019 for further guidance

Information modules covered

	Produc	t	Const	ruction	Rel	ated to		Use sta Iding fa		Relat the bu			End-	of-life		Benefits and loads beyond the system boundary
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
V	V	V										V	V	V	V	\checkmark

Note: Ticks indicate the Information Modules declared.

Manufacturing site

The transport distances were adapted to the factory, specific transport distances for each provider were used for raw material transport. The manufacturing site included in this EPD is:

Hempel Paints (Emirates) L.L.C Interchange No. 08, Sajja Area, Plot No 698/G Al Dhaid Road, P.O.Box 2000, Sharjah, United Arab Emirates.

Construction Product:

Product Description

This EPD is representative for Hempafloor Fill 200 (35270).

Hempafloor Fill 200 (35270) is a two-component, solvent free epoxy putty filler specially designed to fill imperfection like cracks, blow holes, spalls and other surface irregularities and fairing the surface of interior and exterior concrete floors prior to applying topcoats of the Hempafloor range. This product can be applied with a trowel, putty knife or spatula.

Hempafloor Fill 200 (35270) has excellent filling properties with high shrinkage resistance. It can be applied up to 5mm thickness in one coat. Hempafloor Fill 200 has excellent chemical and impact resistance.

Hempafloor Fill 200 (35270) adheres well to concrete surfaces and allows rapid repair of concrete floors. Being a solvent free filler, it is with low VOC and odour. It is recommended for walkways, parking bays, ramps and for traffic deck systems for heavy duty traffic areas in warehouses, factories, laboratories, hospitals, kitchens, high tech manufacturing facilities, and for different types of industrial floors.

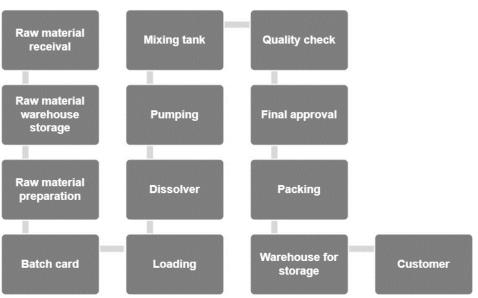
Technical Information

Property	Value, Unit
Relative density	1.9 kg/l
Solids by volume	99 ± 2%
Dry film thickness	500 - 5000 μm

EPD Number: 000526 BF1805-C-ECOP Rev 0.2 Date of Issue:25 September 2023 Page 3 of 15

Property	Value, Unit
Wet film thickness	500 - 5058 μm
Theoretical spreading rate	2.0 – 0.2 m²/l
Coverage	0.96 – 9.60 kg/m²

Product Contents


The material composition of the declared mixed product:

Material/Chemical Input	%
Binder	20 - 40
Filler	50 – 75
Pigments	<5
Additives	<5
Solvents	<3

Manufacturing Process

The manufacturing process for coatings involves combining and mixing multiple chemicals and materials into a homogenous product, which is then packaged and distributed.

Process flow diagram

End of Life

Coatings are typically disposed of with the substrate they are painted on. This can be through recycling, incineration or landfill, but the coating itself is unlikely to be separated from the substrate during the disposal process.

EPD Number: 000526	
BF1805-C-ECOP Rev 0.2	

Date of Issue:25 September 2023 Page 4 of 15

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1 kilogram of Hempafloor Fill 200 (35270) paint

System boundary

The chosen system has been Cradle to Gate with Modules C and D, which means that the Life Cycle Assessment is contemplated from the manufacturing of the paints until they leave the factory, considering the end-of-life stage and the benefits and loads beyond the system boundary.

Data sources, quality and allocation

To carry out this study, the time period October, 2021 - September, 2022 has been considered as the reference year.

The background databases are Ecoinvent v3.6 (2019) Database for the general model and CEPE Raw Material database v3.0 for raw materials. For electricity, the consumption electricity mix from Ecoinvent v3.6 (2019) of the United Arab Emirates (0,535 kgCO2e/kWh) has been used for Hempel's manufacturing site in Sharjah (Emirates).

The quality of the data and the uncertainties associated with the inventories of each input are also analysed in accordance to Table E.1 of Annex E - Schemes to be applied for data quality assessment of generic and specific data of the EN 15804:2012+A2:2019 standard.

Cut-off criteria

For the present analysis, more than 99% of the mass and energy inputs and outputs of the system have been considered, leaving out diffuse emissions in the factory and the production of manufacturing infrastructure such as industrial machinery and equipment. On the other hand, those suppliers or manufacturers of raw materials that supply less than 5% of the total raw material consumption have been omitted. The remaining suppliers have been adjusted proportionally to 100% to balance this deficit.

hre

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

r al allielei S	describing e		mentai	impacts					
			GWP- total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwate r
			kg CO₂ eq	kg CO ₂ eq	kg CO₂ eq	kg CO₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG
T Toutet stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	2,44E+00	2,54E+00	-1,04E-01	2,46E-04	1,94E-07	1,25E-02	3,58E-04
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	0	0	0	0	0	0	0
End of life	Transport	C2	4,14E-03	4.14E-03	1.47E-06	5.14E-08	9.36E-10	8.62E-06	8.09E-08
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	1,14E-01	1.14E-01	1.20E-04	2.16E-06	9.54E-10	5.01E-05	6.47E-07
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0	0

Parameters describing environmental impacts

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters	describing e	enviro	nmental	impacts					
			EP- marine	EP- terrestrial	POCP	ADP- mineral& metals	ADP- fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG
FIDUUCI Slage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	3,88E-03	2,66E-02	7,69E-03	4,54E-06	3,79E+01	1,14E+01	9,96E-07
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	0	0	0	0	0	0	0
	Transport	C2	1.46E-06	1.62E-05	5.59E-06	1.26E-9	5.83E-02	1.93E-05	2.34E-10
End of life	Waste processing	СЗ	0	0	0	0	0	0	0
	Disposal	C4	2.07E-05	2.25E-04	8.75E-05	2.57E-09	7.18E-02	1.90E-04	1.25E-09
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0	0

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment;

EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters	describing e	nviro	nmental imp	acts			
			IRP	ETP-fw	HTP-c	HTP-nc	SQP
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG
	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	1,60E-01	1,85E+02	3,22E-09	1,03E-07	1,13E+01
Construction	Transport	A4	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	0	0	0	0	0
	Transport	C2	2.53E-04	2.63E-02	3.23E-13	3.71E-11	2.80E-04
End of life	Waste processing	СЗ	0	0	0	0	0
	Disposal	C4	4.07E-04	8.31E-02	7.28E-12	8.55E-11	1.75E-01
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans;

 $\label{eq:HTP-nc} \begin{array}{l} \mbox{HTP-nc} = \mbox{Potential comparative toxic unit for humans; and} \\ \mbox{SQP} = \mbox{Potential soil quality index.} \end{array}$

LCA Results (continued)

Parameters	describing r	esoui	ce use, pri	mary ener	gy			
			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
Product stage	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	4,36E+00	2,53E-01	4,62E+00	4,08E+01	7,61E-01	4,16E+01
Construction	Transport	A4	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	0	0	0	0	0	0
End of life	Transport	C2	7.07E-05	0	7.07E-05	6.18E-02	0	6.18E-02
End of life	Waste processing	СЗ	0	0	0	0	0	0
	Disposal	C4	1.72E-03	0	1.72E-03	7.63E-02	0	7.63E-02
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

LCA Results (continued)

			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m ³
	Raw material supply	A1	AGG	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	0	0	0	2,62E-01
Construction	Transport	A4	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND
Jse stage	Replacement	B4	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND
	Deconstruction, demolition	C1	0	0	0	0
End of life	Transport	C2	0	0	0	1.35E-06
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	8.95E-06
otential enefits and bads beyond ne system oundaries	Reuse, recovery, recycling potential	D	0	0	0	0

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Date of Issue:25 September 2023 Page 10 of 15

LCA Results (continued)

Other enviro	nmental info	rmatic	on describing waste cate	egories	
			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG
Flouter stage	Manufacturing	A3	AGG	AGG	AGG
	Total (of product stage)	A1-3	1,74E-02	1,31E-01	5,54E-05
Construction	Transport	A4	MND	MND	MND
process stage	Construction	A5	MND	MND	MND
Mair	Use	B1	MND	MND	MND
	Maintenance	B2	MND	MND	MND
	Repair	В3	MND	MND	MND
Jse stage	Replacement	B4	MND	MND	MND
	Refurbishment	B5	MND	MND	MND
	Operational energy use	B6	MND	MND	MND
	Operational water use	B7	MND	MND	MND
	Deconstructio n, demolition	C1	0	0	0
End of life	Transport	C2	1.57E-07	1.58E-05	4.13E-07
	Waste processing	СЗ	0	0	0
	Disposal	C4	1.51E-07	1.00E+00	4.46E-07
Potential benefits and bads beyond he system boundaries	Reuse, recovery, recycling potential	D	0	0	0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

LCA Results (continued)

				ionig output				
			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
Product stage	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG
	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1 -3	0	3,17E-02	0	0	0	0
Construction process stage	Transport	A4	MND	MND	MND	MND	MND	MND
	Construction	A5	MND	MND	MND	MND	MND	MND
Use stage	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND	MND
	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
End of life	Deconstructio n, demolition	C1	0	0	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	СЗ	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse; MFR = Materials for recycling

MER = Materials for energy recovery; EE = Exported Energy

Date of Issue:25 September 2023 Page 12 of 15

Scenarios and additional technical information

Scenarios and additional technical information

	tional technical information						
Scenario	Parameter Units Results						
A4 – Transport to the building site	Module not declared						
A5 – Installation in the building	Module not declared						
B2 – Maintenance	Module not declared						
B3 – Repair	Module not declared						
B4 – Replacement	Module not declared						
B5 – Refurbishment	Module not declared						
Reference service life	Module not declared						
B6 – Use of energy; B7 – Use of water	Module not declared						
	Waste for final disposal: Landfill	%	100				
C1 to C4	Transport to waste processing: Truck, fuel consumption	kgkm	3.66E-05				
End of life,	Transport to waste processing: Distance	km	30				
	Transport to waste processing: Capacity utilisation	%	85				
Module D	Module declared						

Interpretation

The results displayed in Figure 1 apply to 1 kilogram of Hempafloor Fill 200 (35270) paint. It illustrates the relative contributions of the different modules assessed to various environmental impact categories and to primary energy use. Most impacts relate to the raw materials that compose the paint (included in Module A1-A3).

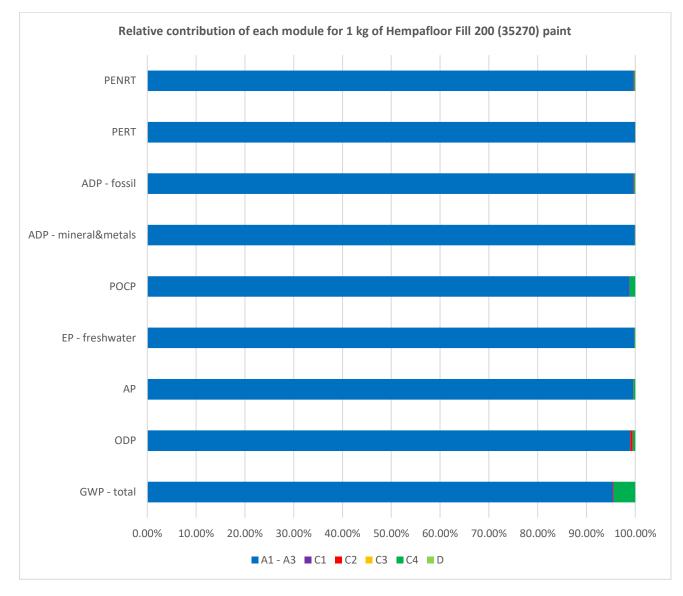


Figure 1: Relative contribution of each module for 1 kilogram of Hempafloor Fill 200 (35270) paint.

Raw material manufacturing and transport (66.64%), packaging (33.33%) and consumption (0.03%) account for the total of the use of renewable primary energy resources (PERT). The manufacturing of raw materials and its transport (88.84%) has the greatest impact on the use of non-renewable primary energy resources (PENRT), while the impact of the production process (due to fuel consumption and product packaging) measures 11.16%. The pre-product manufacturing (raw materials and its distribution) is the main contributor in all impact categories for Module A1-A3 with an average of 76.77%.

EPD Number: 000526
BF1805-C-ECOP Rev 0.2

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

Ecoinvent Version 3.6: Database for Life Cycle Assessment. Swiss Centre for Life Cycle Inventories (ecoinvent Centre), 2019.

CEPE Raw Material database v3.0: Raw materials LCI database for the European coatings and printing ink industries. The European Council of the Paint, Printing Ink, and Artist's Colours Industry (CEPE), 2016.

Life Cycle Assessment: Hempafloor Fill 200 – 35270. LCA report by The Catalonia Institute of Construction Technology (ITeC), 2023.