Statement of Verification

BREG EN EPD No.: 000171

This is to verify that the

Environmental Product Declaration provided by: Pasquill, Saint-Gobain

is in accordance with the requirements of: EN 15804:2012+A1:2013 **BRE Global Scheme Document SD207**

This declaration is for: 1 m³ of timber roof truss

Company Address

Wigan Lane Duxbury Chorley Lancashire PR7 4BU United Kingdom

SAINT-GOBAIN

BRE/Global

EPD

erified

Issue 02

FBaker	Emma Baker	16 September 2021	
Signed for BRE Global Ltd	Operator	Date of this Issue	
15 September 2017		14 September 2022	
Date of First Issue		Expiry Date	
BRE/Global	details visit www.greenbookliv	atement of verification please, visit	
EPD	BRE Global Ltd., Garston, Wat T: +44 (0)333 321 8811 F: +4	ford WD25 9XX. I4 (0)1923 664603 E: Enquiries@brealobal.com	

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000171

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom www.bre.co.uk	BRE Global product category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013, PN514
Commissioner of LCA study	LCA consultant/Tool
Pasquill, Saint-Gobain Wigan Lane Duxbury Chorley Lancashire PR7 4BU United Kingdom	Kim Allbury BRE Bucknalls Lane Watford WD25 9XX United Kingdom
Declared/Functional Unit	Applicability/Coverage
1 m ³ of timber roof truss	Product Average
ЕРД Туре	Background database
Cradle to Gate with options	ecoinvent
Demonstra	ation of Verification
CEN standard EN 1	5804 serves as the core PCR ^a
Independent verification of the declara	ation and data according to EN ISO 14025:2010 ⊠ External
	riate ^b) Third party verifier: r. Fei Zhang
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)
Co	mparability
EN 15804:2012+A1:2013. Comparability is further dep	programmes may not be comparable if not compliant with endent on the specific product category rules, system boundaries ause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Produc		Const	ruction	Rel	ated to		Use sta Iding fa		Relat			End-	of-life		Benefits and loads beyond the system boundary
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
\checkmark	$\overline{\mathbf{A}}$	\checkmark	V													

Note: Ticks indicate the Information Modules declared.

Manufacturing sites

Bodmin site Cooksland Road Bodmin Cornwall PL31 2RH

Chorley site Wigan Lane Duxbury Chorley PR7 4BU

Leeds site Jawbone Industrial Estate Woods Lane Rothwell Leeds LS26 0RS

Redhill Site Salbrook Road Salfords Redhill RH1 5GJ

Taunton site Livingston Way Off Bindon Rd Taunton, TA2 6BD Buckley site Pinfold Industrial Estate Pinfold Lane Buckley CH7 3PL

Inverness site 3 Dalcross Industrial Estate Inverness IV2 7XB

Newport Site Westway Road Alexandra Dock Newport NP20 2WD

Stoney Stanton site Station Road Stoney Stanton Leicestershire LE9 4DJ

Uddingston site 9 Grays Road Green Elms Trading Estate Uddingston Glasgow G71 6ET

Construction Product:

Product Description

Saint-Gobain Building Distribution Ltd t/a Pasquill design, manufacture and supply timber roof trusses assembled from solid structural timber (European Whitewood/Redwood graded TR26) with individual timber members joined together with punched metal plate fasteners. Engineered timber roof trusses are designed and manufactured specifically to support the roof structure of each buildings specific purpose, layout, roof covering and location. The engineered timber roof truss is designed in accordance with BS5268-3:2006 or EC5 and with a life span of 60 years to conform with NHBC requirements.

Further information from www.pasquill.co.uk and www.tra.org.uk

Technical Information

As engineered timber roof trusses are designed and manufactured for each specific building's design, purpose and location, technical specifications are bespoke to each design, however the following characteristics are considered as defined within BS EN 14250:2010.

Property	Value, Unit
Timber grade	TR26 in accordance with EN14081-1
Timber size – Thickness (width)	Not less than 35mm in accordance with EN336:2013 tolerance class 2
Timber size – Depth, external (chord) members	Not less than 68mm in accordance with EN336:2013 tolerance class 2
Timber size – Depth, internal (web) members	Not less than 58mm in accordance with EN336:2013 tolerance class 2
Moisture content	Less than 22%
Size, load bearing capacity and stiffness	As defined by design in accordance with BS5268/EN1995-1-1 (EC5)
Dimensional accuracy to design	Up to and including 10m accuracy +/- 10mm
Reaction to fire	D-s2, d0 in accordance with BS EN 13501-1:2007+A1:2009
Density of product	585 kg/m ³

Main Product Contents

The values provided in the table below presents the mean percentage of inputs per m³ of timber roof truss.

Material/Chemical Input	%
European Whitewood / Redwood Timber*	96.3
Punched metal plate fasteners	3.7

*For treated timber trusses, 2% of the mass of the timber treatment is left on the final product (which accounts for a maximum of 0.2% of the final product mass).

EPD Number: 000171	
BF1805-C Rev 0.0	

Manufacturing Process

The Pasquill manufacturing facilities are certified to ISO9001 Quality Management System, ISO14001 Environmental Management System, ISO50001 Energy Management System, OHSAS18001 Health & Safety Management System, Chain of Custody schemes and product is designed and manufactured to the appropriate European Standard and CE mark applied.

The manufacturing process for engineered timber roof trusses is split into the following 5 segments and is the same for all roof trusses at all Pasquill sites.

1. Raw Material Handling and Picking

The raw materials for timber roof trusses are received in bulk quantities and stored in bulk storage areas according to section size and length. Stock is picked for production to the optimum length to reduce waste.

2. Sawing

Timber for the complete truss is cut to the desired length and placed on carts, waste off cuts are placed in the timber waste skip.

3. Setting

Chocks and blocks are placed on the setting press to correctly position the timbers for the required design.

4. Pressing

Timbers are positioned within the jig and metal plate fasteners are accurately positioned at each joint according to the design. The metal plates are fully pressed into the timber to form each joint.

5. Removal, storage and loading

After pressing all joints each truss in turn is removed from the jig and placed on suitable truss trolleys, finally each batch of trusses is banded together using banding tape. Once all trusses for the designed roof structure have been completed they are ready to be loaded onto lorries for transportation to the customer site.

Process flow diagram

Date of Issue:16 September 2021 Page 6 of 11

Life Cycle Assessment Calculation Rules

Declared unit description

1 m³ of timber roof truss

System boundary

In accordance with the modular approach as defined in EN 15804:2012, this cradle-to-gate with options EPD includes the processes covered in the manufacture of the roof trusses (A1 to A3), plus transport of trusses to construction site (A4).

Data sources, quality and allocation

Manufacturer-specific data covering a production period of 1 year (1/01/16 - 31/12/16) obtained from Pasquill production processes in the ten production sites was used.

At some of the production sites, Pasquill manufacture other finished products in addition to the roof trusses. Where this has been the case, calculations were performed to allocate total site energy use, water, and waste to the roof truss products. Allocation procedures were by physical allocation and are according to EN 15804 and are based on the ISO14044 guidance.

SimaPro v8 software was used to carry out the LCA modelling, with background LCI datasets taken from the ecoinvent database v3.2. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs according to the requirements specified in EN15804.

The trusses produced at the Pasquill sites include both treated and untreated wood. This EPD covers both truss types and the individual site data have been combined on a mass weighted average based on production volume.

Cut-off criteria

All raw materials and consumable item inputs, and associated transport to the plant, process energy and water use, direct production waste and wastewater are included.

hre

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

deceribing environmental import

Farameters	rarameters describing environmental impacts												
				ODP	AP	EP	POCP	ADPE	ADPF				
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.				
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG				
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG				
FIDUUCI Slage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	-1014	5.38E-05	2.15	0.739	0.286	0.0156	4813				
Construction process stage	Transport	A4	9.78	1.80E-06	0.0327	0.00863	0.00571	2.58E-05	148				

GWP = Global Warming Potential;

ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters	Parameters describing resource use, primary energy											
				PERM	PERT	PENRE	PENRM	PENRT				
			MJ	MJ	MJ	MJ	MJ	MJ				
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG				
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG				
Floudel slage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	16897	0.000907	16897	5117	0	5177				
Construction process stage	Transport	A4	1.96	7.30E-06	1.96	147	0	147				

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

LCA Results (continued)

Parameters describing resource use, secondary materials and fuels, use of water

-		SM	RSF	NRSF	FW	
		kg	MJ net calorific value	MJ net calorific value	m³	
supply Transport	A1	AGG	AGG	AGG	AGG	
	Transport	A2	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	0	0	0	3.72
Construction process stage	Transport	A4	0	0	0	0.032

SM = Use of secondary material;

RSF = Use of renewable secondary fuels;

 $\label{eq:NRSF} \begin{array}{l} \mbox{NRSF} = \mbox{Use of non-renewable secondary fuels}; \\ \mbox{FW} = \mbox{Net use of fresh water} \end{array}$

Other environmental information describing waste categories

			HWD	NHWD	RWD					
			kg	kg	kg					
	Raw material supply	A1	AGG	AGG	AGG					
Droduct store	Transport	A2	AGG	AGG	AGG					
Product stage	Manufacturing	A3	AGG	AGG	AGG					
	Total (of product stage)	A1-3	14.4	55.9	0.0203					
Construction process stage	Transport	A4	0.0619	6.89	0.00102					

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life											
				MFR	MER	EE					
		kg	kg	Kg	MJ per energy carrier						
	Raw material supply	A1	AGG	AGG	AGG	AGG					
Product stage	Transport	A2	AGG	AGG	AGG	AGG					
T Toutet stage	Manufacturing	A3	AGG	AGG	AGG	AGG					
	Total (of product stage)	A1-3	0	26.3	0	0					
Construction process stage	Transport	A4	0	0	0	0					

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

EPD Number: 000171 BF1805-C Rev 0.0 Date of Issue:16 September 2021 Page 9 of 11

Scenarios and additional technical information

Scenarios and additional technical information										
Scenario	Parameter Units Results									
A4 – Transport to the building site	Trusses manufactured by Pasquill are transport by road to or Distance will vary depending on where the project is located assumed.									
	Lorry (Diesel)	kg/tkm	0.037							
	Distance	km	100							
	Capacity utilisation (incl. empty returns)	%	37							
	Bulk density of transported products	kg/m ³	585							

Summary, comments and additional information

Interpretation

The results record a negative GWP value during the production phases (A1-A3). This is due to the carbon storage within the timber, and can be viewed as a positive contribution to the climate change indicator category.

Looking in detail at the sources of GWP resulting from the life cycle modules assessed, the main contributor to the category is the transportation of the raw materials to site (Figure 1). The raw material production of the punched metal plate fasteners and the energy used during the production process are also prominent. The transport of the finished product to site (A4) has a minimal contribution.

All Pasquill products are manufactured under Environmental Management System ISO14001 and are available with chain of custody certification.

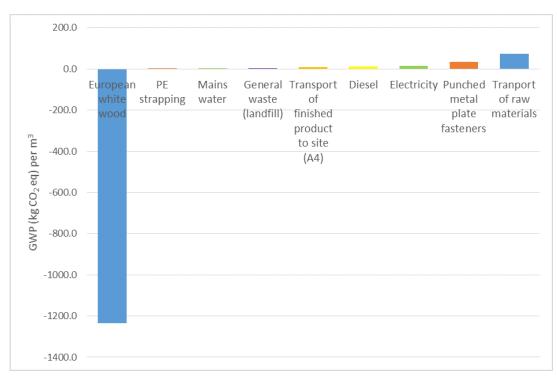


Figure 1: GWP by source (kg CO₂ eq.) per m³ of mass weighted average timber roof truss

EPD Number: 000171	Date of Issue:16 September 2021	Expiry Date 14 September 2022
BF1805-C Rev 0.0	Page 10 of 11	© BRE Global Ltd, 2017

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

CPR. Declaration of Performance – BS EN 14250:2010, Timber structures – Product requirements for prefabricated structural members assembled with punched metal plate fasteners.

BS 5268-3:2006 - Structural use of timber. Code of practice for trussed rafter roofs

BRE. BRE Global product category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013, PN514. Watford, UK, BRE Global Limited, 2014

BS EN 13501-1:2007+A1:2009 -Fire classification of construction products and building elements. Classification using test data from reaction to fire tests

BS EN 14081-1:2016. Timber structures. Strength graded structural timber with rectangular cross section. General requirements

BS EN 336:2013. Structural timber. Sizes, permitted deviations.

BS EN 1995-1-1 Euro Code 5 (EC5). Design of timber structures. Common rules and rules for buildings